

1 **Chromosome-level genome assembly of the Erythrina Gall Wasp, *Quadrastichus erythrinae***
2 **(Hymenoptera: Eulophidae)**

4 **Y. Miles Zhang¹, Justin Merondun^{2,3}, Renee L. Corpuz¹, Angela N. Kauwe¹, Scott M. Geib¹, Sheina**
5 **B. Sim¹**

7 1. Tropical Pest Genetics and Molecular Biology Research Unit, Agricultural Research Service, U. S.
8 Department of Agriculture, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo
9 Street, Hilo, HI, 96720, USA

10 2. Tropical Plant Genetic Resources and Disease Research Unit, Agricultural Research Service, U. S.
11 Department of Agriculture, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo
12 Street, Hilo, HI, 96720, USA

13 3. Hawaii Agriculture Research Center, 94-340 Kunia Rd, Kunia, HI, 96759, USA

15 **Abstract**

18 The erythrina gall wasp, *Quadrastichus erythrinae*, is an invasive gall-inducing chalcidoid wasp and a
19 major pest of the endemic wiliwili tree (*Erythrina sandwicensis*) in Hawai'i. As a foundation to associated
20 research, we generated a chromosome-level genome assembly from a wild-collected female measuring
21 <2 mm. The final assembly consists of five scaffolds representing the five autosomes totaling 399 Mb
22 (N50 = 75.6 Mb) and one unplaced 16 kb contig. BUSCO analysis recovers 89.8% of conserved
23 Hymenoptera orthologs, representing the first chromosome-scale genome for the genus *Quadrastichus*.
24 Comparative genomic analyses reveal conservation across Hymenoptera despite deep evolutionary
25 divergence, with strongest collinearity to the chalcidoid *Nasonia vitripennis*. Genome size variation is
26 largely explained by repeat content, and *Q. erythrinae* exhibits high proportions of unclassified
27 transposable elements similar to cynipid gall inducer. We also assembled a complete genome of its
28 endosymbiont, *Wolbachia pipiensis*. Together, these genomic resources provide a foundation for
29 comparative, evolutionary, and applied research aimed at managing this invasive pest.

31 **Keywords: Tetrastichinae, Chalcidoidea, secondary phytophagy, insect pest, Wolbachia**

33 **Introduction**

34 The tetrastichine eulophids are one of the largest subfamilies of chalcidoid wasps, comprising over 100
35 genera and approximately 3,000 known species (UCD Community, 2023). This hyperdiverse but poorly
36 defined group includes 16 genera with recorded phytophagy and the ability to induce galls on both
37 monocot and dicot plants (Zhang et al., 2022). *Quadrastichus* is one of the larger genera within the
38 "Tetrastichus group" sensu Rasplus et al. (2020), with 95 described species and many others still
39 undescribed (UCD Community, 2023; Kärnnäs et al., 2025).

40 The Erythrina gall wasp, *Quadrastichus erythrinae*, is a gall-inducing species first identified in 2004 when
41 it emerged as a serious invasive pest (Kim et al., 2004). Despite being less than 2 mm in size, the wasp is
42 a major invasive pest that induces galls on the young leaves, stems, and petioles of *Erythrina* (Fabaceae:
43 Faboideae) species (Figure 1), often leading to tree decline and death (Kim et al., 2004; Lin et al., 2021).
44 Likely originating in East Africa, *Q. erythrinae* has spread rapidly across tropical and subtropical regions
45 of Asia, Oceania, and the Americas (Kim et al., 2004; Lin et al., 2021). It causes significant damage to
46 both endemic and introduced *Erythrina* species. In Hawai'i, for example, *Q. erythrinae* posed a major
47 threat to the endemic *Erythrina sandwicensis* (wiliwili) until the successful deployment of the biological
48 control agent *Eurytoma erythrinae* reduced infestation levels (Kaufman et al., 2020).

49 We sequenced and assembled a chromosome-level genome for the invasive pest *Q. erythrinae*,
50 leveraging its raw sequencing data to also recover the complete genomes of its *Wolbachia*
51 endosymbionts. This approach demonstrates how mining host genome data can effectively characterize
52 cobionts, providing crucial ecological context for their hosts.

53 **Materials and methods:**

54 **Source material**

57 Galls from the leaves of *E. sandwicensis* were collected near Wawaloli Beach Park in Kaiminani, HI
58 (19.7145, -156.0491) on 3.V.2025 and returned to the United States Daniel K Inouye U.S. Pacific Basin
59 Agricultural Research Center in Hilo, Hawai'i, USA. Adults were reared out of the galls, identified, flash-
60 frozen alive using liquid nitrogen, and stored in -80°C until genomic library preparation.

61
62 **Library preparation and sequencing**
63

64 The whole body of a single female wasp was homogenized into a fine powder while kept frozen using a
65 SPEX SamplePrep 2010 Geno/Grinder (Cole Parmer, Metuchen, New Jersey, USA) and underwent high
66 molecular weight (HMW) DNA extraction using the fresh or frozen tissue protocol of the Qiagen
67 MagAttract HMW DNA Kit (Qiagen, Hilden, Germany). Following isolation, the HMW DNA (92.5ng) was
68 sheared to a mean fragment length of 20 Kb with a Megaruptor 3 (Diagenode, Denville, New Jersey,
69 USA) and prepared into a PacBio SMRTBell library using the SMRTBell Express Template Prep Kit. 3.0
70 (Pacific Biosciences, Menlo Park, California, USA) using a barcoded adapter. After DNA isolation,
71 shearing, and library preparation, the sample was purified using solid-phase reversible immobilization
72 beads (SPRI beads) (DeAngelis et al., 1995) and quantified using fluorometry and spectrophotometric
73 absorbance ratios (DeNovix Inc., Wilmington, Delaware, USA). Fragment length distribution after each
74 step were determined by Femto Pulse or Fragment Analyzer (Agilent Technologies, Santa Clara,
75 California, USA). The resulting library was pooled with other samples and sequenced on a PacBio Revio
76 system using a 30-hour movie length on 1/10th of a Revio SMRTCell. Raw subreads were converted to
77 HiFi data using the PacBio SMRTLink software v.10.1.

78 Concurrent to HiFi sequencing, a pool of twelve males were used to prepare an enriched chromosome
79 conformation capture (HiC) library. Tissues were homogenized in 1x phosphate buffered saline and
80 nuclei were crosslinked in a 2% formaldehyde solution. Following crosslinking, the sample was lysed and
81 digested using the restriction enzymes Ddel and DpnII. To enrich the sample for proximity ligated
82 fragments, a biotin-labeled dATP fill-in step was performed prior to proximity ligation so fragments could
83 be captured downstream. Following proximity ligation, a crosslink reversal step was performed followed
84 by two DNA purification steps using SPRI beads, the removal of biotin from unligated ends, and another
85 DNA purification step. The sample was size-selected using SPRI beads, biotinylated ligation products
86 were captured, and the sample was prepared into a short-read sequencing library using the NEBNext
87 Ultra II DNA Library Prep Kit (New England Biolabs, Ipswich, Massachusetts, USA). The final libraries
88 were sequenced on a partial flowcell using the AVITI 2x150 Sequencing Kit Cloudbreak FS High Output
89 kit on the Element AVITI System (Element Biosciences, San Diego, CA). Following sequencing, raw
90 reads were base called using bases2fastq v.2.3.0.2116803307.

91
92 **Genome assembly, assessment, and contaminant removal**

93 HiFi reads were screened and filtered for adapter-contaminated sequence artifacts using FCS-Adaptor
94 and HiFiAdapterFilt (Sim et al., 2022) (<https://github.com/ncbi/fcs>). The resulting HiFi reads were used to
95 assemble contigs using HiFiASM (v.0.24.0-r702) (Cheng et al., 2021; Cheng et al., 2022). The contig
96 assemblies were subsequently purged of duplicate contigs using PurgeDups (Guan et al., 2020), and the
97 duplicate purged contig assembly served as the reference to map HiC reads using BWAmem 2 (v.2.2.1)
98 (Vasimuddin et al., 2019). The resulting mapped reads were filtered for artifact PCR duplicates using
99 Picard (v.3.2.0) (Picard2019toolkit, 2019 <https://github.com/broadinstitute/picard>). A contact map was
100 generated from the de-duplicated mapped reads using the YaHS pipeline (Zhou et al., 2023).
101 Visualization of the contact map and minor manual editing was achieved using Juicebox (v.2.15) (Durand
102 et al., 2016). Minimap2 (v.2.22-r1101) was used to map HiFi reads back to the contig assembly and
103 calculate coverage of each contig, the --auto function and --genome mode of BUSCO (v.5.8.3, Manni et
104 al. 2021) was used to select the appropriate taxon database and estimate genome completeness, and
105 BLAST+ and Diamond were used to perform nucleotide alignments to the NCBI nucleotide database
106 (accessed November 2025) and UniProt protein database (accessed November 2025) respectively
107 (Buchfink et al., 2021; Camacho et al., 2009; Li, 2018, Tegenfeldt et al., 2025). The resulting outputs of
108 minimap2, BUSCO, BLAST+, and Diamond were summarized and visualized using Blobtools2 and
109 blobblurb (Challis et al., 2020); (<https://github.com/sheinasim/blobblurb>). Additional taxonomic
110 assignments of contigs and contig fragments was performed using the FCS-GX (Astashyn et al., 2024).
111 The confluence of the taxonomic assignments based on nucleotide alignment, protein alignment, and
112 FCS-GX was used to identify contigs assigned to *Wolbachia* and remove non-Arthropod contigs from the

113 assembly. The primary and alternate assemblies were submitted to the National Center for Biotechnology
114 Information (NCBI).

115

116 **RNA extraction and sequencing**

117 We sequenced RNA to aid in genome annotation. Specifically, total RNA was extracted from three pools
118 of four male specimens separated by body parts (head, thorax/mesosoma, and abdomen/metasoma),
119 through homogenization of snap frozen tissue in Tri Reagents and then extraction using the Zymo Direct-
120 zol Magbead Total RNA kit (Zymo Research, Irvine, CA) on a Kingfisher Flex 96 system (ThermoFisher,
121 Waltham, MA). From total RNA, a poly(A) cDNA library was generated using the NEB Ultra II RNA Library
122 Prep Kit (New England Biolabs, Ipswich, MA) using oligo(dT) selection. The final RNASeq libraries were
123 sequenced on a partial flowcell using the AVITI 2x150 Sequencing Kit Cloudbreak FS High Output kit on
124 the Element AVITI System (Element Biosciences, San Diego, CA). Following sequencing, raw reads were
125 base called using bases2fastq v.2.3.0.2116803307 the same way as HiC above.

126

127 **Genome Annotation**

128 We performed genome annotation of *Q. erythrinae* using the Eukaryotic Genome Annotation Pipeline -
129 External (EGAPx) (<https://github.com/ncbi/egapx>) v0.4.0. Short-read RNA-Seq from a pool of 4 whole
130 male bodies were used as transcriptome evidence and aligned to the respective reference using STAR.
131 Miniprot was used to align Hymenoptera protein sequences to the reference. Gnomon
132 (https://www.ncbi.nlm.nih.gov/refseq/annotation_euk/gnomon/) was used for gene prediction using protein
133 and RNA-seq alignments and *ab-initio* predictions based on HMM. Lastly EGAPx adds functional
134 annotations to the final structural annotation set based on orthology and model type and quality. The
135 *Wolbachia* genome was annotated using Prokka v1.14.6 (Seeman, 2014).

136

137 **Mitochondrial genome**

138 We identified all potential mitochondrial genome contigs using the MitoHiFi pipeline (Uliano-Silva et al.,
139 2023). MitoHiFi implemented a BLAST search for contigs that have a high similarity to the mitochondrial
140 genome of *Nasonia vitripennis*, (NCBI RefSeq accession NC_066201.1) (Camacho et al., 2009) and
141 selected the contig with the greatest similarity. Mitochondrial genes were then structurally annotated
142 using intervals from the same mitochondrial genome used in the BLAST search through the MitFi
143 annotation program in MITOS2 (Bernt et al., 2013). A representative mitochondrial genome was
144 submitted to NCBI under the accession PX622211.

145

146 **Synteny across Hymenoptera**

147 Synteny conservation among eight chromosome-scale diverse hymenopteran assemblies (Table 2) was
148 used to place the *Q. erythrinae* genome in a comparative genomic context. Analyses were performed
149 using all annotated genes by first extracting the longest isoform per gene from the RefSeq GFF
150 annotations using AGAT (v1.4.3) (Dainat et al. 2025), with corresponding nucleotide CDS sequences
151 inferred with TransDecoder (v5.7.1) (Haas et al. 2013). Synteny inference was performed in JCVI
152 (v1.4.16) (Tang et al. 2024) using LAST (v2.37.4) (Frith et al. 2010) for pairwise alignment, applying a
153 cscore threshold of 0.99 to retain reciprocal best-hit gene pairs and filtering syntenic blocks containing at
154 least 10 gene anchors. Synteny was visualized using pairwise dot plots and whole-chromosome
155 karyoplots. Note that JCVI visualizations are based solely on gene order and anchor counts, so
156 chromosome lengths in JCVI plots do not reflect physical chromosome sizes.

157 We corroborated this analysis with BUSCO-defined genomic anchors and chromsyn (v1.6.1) (Edwards et
158 al. 2022), which infers collinear regions from the relative order and spacing of conserved single-copy
159 orthologs. All genomes were annotated with BUSCO (v5.8.3) using the Hymenoptera lineage dataset
160 (hymenoptera_odb12). Conserved regions were defined by clustering BUSCO loci using chromsyn,
161 retaining only syntenic blocks larger than 100 Kb which contain more than 2 BUSCO genes to emphasize
162 macro-syntenic structure. Shared synteny among assemblies was quantified by counting these pairwise
163 BUSCO-defined blocks with visualization using log-scaled heatmaps in R (v4.4.1) and the tidyverse
164 (v2.0.0) (R Core Team 2017; Wickham et al. 2019).

165

166 **Repeat landscape**

167 We quantified total repetitive DNA content for the same eight chromosome-level hymenopteran
168 assemblies using EarlGrey (v6.3.5) (Baril et al. 2024). Repeat annotation summaries were derived from
169 GFF files using custom R scripts, assigning each genomic position to a single repeat subclass using a
170 fixed hierarchical order (LTR, LINE, Penelope, SINE, DNA, Rolling Circle, Other, Unclassified, Non-
171 Repeat), with overlapping intervals resolved by priority-based merging in this order using R, tidyverse,
172 and GenomicRanges (v1.56.2) (Lawrence et al. 2013). From these repeat annotations we extracted three
173 summary metrics per transposable element (TE) subclass: (i) total cumulative genomic coverage (Mb), (ii)
174 the number of distinct TE families, and (iii) the proportion of the genome covered by each subclass. To
175 assess the relationship between repeat abundance and genome size while accounting for shared
176 evolutionary history, we performed phylogenetic generalized least squares (PGLS) regression using
177 caper (v1.0.4) (Orme et al. 2025) in R. Both genome size and total repeat genomic coverage (Mb) were
178 log-transformed and Pagel's λ was estimated by maximum likelihood to identify phylogenetic signal. As a
179 non-parametric complement, we computed Spearman's rank correlation between genome size and
180 repeat genomic coverage (Mb). Both analyses were repeated excluding *Belonocnema kinseyi* as its
181 substantially larger genome size relative to the other assemblies could disproportionately influence
182 results.

183 **Results and Discussion**

184

185 **Genome assembly metrics**

186 PacBio HiFi sequencing yielded a highly contiguous genome for *Q. erythrinae*. From one Revio cell where
187 the barcoded *Q. erythrinae* SMRTBell library represents 1/10th of the sequencing run, 621,619 HiFi reads
188 (9.5 Gb of HiFi data) were obtained, of which 18 (0.00002% of reads) were discarded after filtering with
189 HiFiAdapterFilt. K-mer analysis of the final assembly relative to the PacBio HiFi reads used to create the
190 contig assemblies reported a raw QV score 55.031. The genome coverage was estimated at 22.6x
191 coverage using GenomeScope2. The initial HiFiASM assembly consisted of 41 contigs, L50 of 5, N50 of
192 32.9 MB, L90 of 5, N90 of 4.2 MB, and a genome size of 399.197 MB (Table 1). The final assembly
193 consists of 41 contigs representing five autosomes, a mitochondrial genome, and one unplaced 16.7 kb
194 contig composed completely of repeat elements as identified by EarlGrey. Scaffolding with HiC further
195 improved the contiguity of the genome, while BlobToolKit identified one scaffold of non-Arthropod origin,
196 mapped to the endosymbiotic bacterium *Wolbachia pipiensis*. Upon removal of the endosymbiont, the final
197 genome consisted of six scaffolds totaling 399.201 MB, an N50 of 75.621 MB, L50 of three, N90 of
198 59.692 MB, and L90 of five (Figure 2A). The assembly has a fairly complete Hymenoptera BUSCO, with
199 89.8% single-copy complete, 2.4% fragmented, 1.2% duplicated, and 6.5% missing using
200 hymenoptera_odb12 (n=5920) (Figure 2A). Though this does not meet the minimum Earth Biogenome
201 Project (EBP) standard for BUSCO completeness, it is in parity with annotated Chalcidoidea genomes in
202 NCBI. HiC scaffolding revealed five chromosomes (Figure 2B). Repetitive elements encompassed 57.2%
203 (229.8 MB) of the *Q. erythrinae* genome. Among these, TEs class I (LTRs, LINEs, and Penelope-Like
204 Elements) represented 19.2% of the genome, while TEs class II (DNA transposons and Rolling Circle
205 Helitrons) represented 11.0%. Additionally, 24.7% of the TEs were unclassified, while other repeats
206 (Simple Repeats, Microsatellites, RNAs) consisted of 2.4%. The *Q. erythrinae* genome has many quality
207 metrics that meet or exceed the standards of the Earth BioGenome Project, such as a contig N50 well
208 over 1 MB (N50 = 40.5 MB), and single-copy complete BUSCOs close to 90% (Lawniczak et al., 2022).
209 Additionally, the size of the scaffold genome (399 MB) is well within the range of size of available
210 genomes on NCBI for Eulophidae, Chalcidoidea, and Hymenoptera.

211 The mitochondrial genome of *Quadrastichus erythrinae* is 14,607 bp in length and contains the full
212 complement of 13 protein-coding genes, 22 tRNA genes, and both rRNA genes. The arrangement of
213 genes is cox1–cox2–atp8–atp6–cox3–nad3–nad2–rrnS–rrnL–nad1–cytb–nad6–nad4L–nad4–nad5, which
214 differs from the type-5 and type-6 arrangements found in many chalcidooids, including other *Quadrastichus*
215 species (Zhu et al., 2023). In particular, the cox/atp/nad3 block is inverted compared to type-5/6, with
216 type-5/6 showing nad3–cox3–atp6–atp8–cox2–cox1 while the genome of *Q. erythrinae* has cox1–cox2–
217 atp8–atp6–cox3–nad3; the nad5–nad4–nad4L block is also reversed relative to type-5/6, and nad2 is
218 moved from the last position in type-5/6 to an early position in the genome, reflecting extensive
219 mitochondrial gene rearrangement.

220 The *Wolbachia* genome wQua is 1,346,620bp, with a BUSCO score of 98.0% single-copy complete, 0.3%
221 fragmented, 1.7% duplicated, and 0% missing using rickettsiales_odb12 (n=345). It belongs to
222 Supergroup A, which is commonly found among terrestrial insects including Hymenoptera (Vancaester
223 and Blaxter, 2023).

224 **Chromosome-level syntenic conservation**

225 Whole-genome alignments indicate high syntenic conservation between *Q. erythrinae* and other
226 hymenopteran genomes despite considerable variation in haploid chromosome counts and assembly
227 contiguity across taxa (Figure 3). Reciprocal best-hit comparisons across all annotated genes reveal the
228 highest degree of orthology between the two chalcidoid species *Q. erythrinae* and *N. vitripennis* (n =
229 7,144), intermediate counts in other comparisons, and the lowest between *B. kinseyi* and *D. longicaudata*
230 (n = 691) after filtering for syntenic blocks containing ≥ 10 gene anchors (Figure 3A). Gene order between
231 *Q. erythrinae* and *N. vitripennis* is largely collinear (Figure 3B), consistent with extensive conservation of
232 chromosomal architecture within Chalcidoidea.

233 At the level of deeply conserved genes, BUSCO counts on chromosome-scale scaffolds differed modestly
234 between Proctotrupomorpha (*Q. erythrinae*, *N. vitripennis*, *B. kinseyi*) (mean = 5,365, range = 5,234–
235 5,543) and other lineages (mean = 5,795, range = 5,752–5,826), with overlapping ranges and only a
236 marginally significant difference in mean values (two-sample t-test p-value = 0.04). This pattern indicates
237 broadly comparable recovery of deeply conserved single-copy orthologs across assemblies, consistent
238 with BUSCO scores as a measure of expected gene content completeness rather than a sensitive
239 indicator of lineage-specific gene gain or loss (Waterhouse et al. 2018). Even across deep evolutionary
240 distances in Hymenoptera (~250 My divergence; (Blaimer et al. 2023)) we recover numerous macro-
241 syntenic blocks ≥ 100 Kb containing at least two BUSCO genes, reflecting persistence of large conserved
242 genomic segments despite lineage-specific rearrangements (Figure 3C). The greatest number of
243 conserved BUSCO-anchored syntenic blocks is between the two chalcidoids *Q. erythrinae* and *Nasonia*
244 *vitripennis* (n = 2,482), whereas the fewest occur between *Q. erythrinae* and the braconid
245 *Diachasmimorpha longicaudata* (n = 227). This pattern reflects known heterogeneity in chromosome
246 number evolution across Hymenoptera, with broad karyotypic diversity involving frequent rearrangements
247 accompanying speciation and life-history shifts (Gokhman 2022).

248

249 **Repeat evolution**

250 Repeat composition varied substantially across the sampled hymenopteran genomes (Figure 4). Notably,
251 no short interspersed nuclear elements (SINEs) were detected on chromosome-scale scaffolds in any
252 assembly, consistent with previous reports that SINEs comprise a negligible fraction (<1 %) of
253 transposable element content in Hymenoptera relative to other insect orders (Petersen et al. 2019).
254 Despite relatively similar gene counts across species (ranging from 33,367 in *Apis mellifera* to 44,526 in
255 *Solenopsis invicta*), genome size varied substantially, leading us to test whether differences in repeat
256 abundance explain this interspecific variation. Across the seven species excluding the exceptionally
257 large-genome outlier *B. kinseyi* (1.54 Gb, Table 2), phylogenetically corrected regression revealed that
258 total repeat content is a strong predictor of genome size ($\beta = 0.32 \pm 0.086$, $p = 0.014$, $\lambda = 0.0$), explaining
259 73.6 % of variance in genome size (Figure 4D). A non-parametric Spearman correlation corroborated this
260 association ($\rho = 0.89$, $p = 0.012$), further supporting a positive relationship between repeats and genome
261 size (Figure 4D). These associations remained significant with inclusion of *B. kinseyi* (PGLS $p < 0.01$;
262 Spearman's $\rho = 0.93$; Figure 4C). These patterns align with patterns observed broadly across insects,
263 where repetitive sequence content often underlies genome size variation (Cong et al. 2022; Cook et al.
264 2025) and contributes to the C-value enigma by driving genome size expansions independent of coding
265 content (Gregory 2001). Interestingly, despite *Q. erythrinae* having a much smaller genome than *B.
266 kinseyi*, both distantly related gall inducers harbor large proportions of unclassified TEs, accounting for

267 24.7% and 52.8% of their genomes, respectively (**Figure 4A**). This contrasts with the more closely related
268 chalcidoid parasitoid *N. vitripennis*, which also has a small genome but a much lower proportion of
269 unclassified TEs (13.5%). Although it is premature to infer convergent genomic patterns among
270 phytophagous lineages within Proctotrupomorpha, future characterization of these unclassified TEs
271 across broader taxonomic sampling within the group will be important for determining whether genome
272 expansion is associated with the transition to phytophagy.

273 **Conclusion**

274 The *Q. erythrinae* reference genome, generated from a single female measuring <2 mm with <100ng of
275 input DNA for library preparation and occupying approximately one-tenth of a PacBio HiFi SMRT Cell,
276 represents a major advance as the first genome for a phytophagous eulophid and the first chromosome-
277 scale assembly for the genus *Quadrastichus*. Importantly, this demonstrates that high-quality,
278 chromosome-level assemblies can be obtained from extremely small insects without whole-genome
279 amplification, defining a practical lower bound for direct long-read sequencing of minute taxa. Given
280 current PacBio Revio pricing, the HiFi sequencing for this genome corresponds to only ~\$100 USD in
281 marginal sequencing cost, underscoring the increasing feasibility of low-cost *de novo* genome assembly
282 for tiny hymenopterans, even while acknowledging additional costs associated with sample preparation
283 and library construction. As only the fifth genome available for the hyperdiverse subfamily
284 Tetrastichinae—and only the second at chromosome scale—this resource expands genomic
285 representation for Chalcidoidea. Comparative analyses reveal strong macro-syntenic conservation across
286 Hymenoptera despite extensive karyotypic variation, highlighting the utility of this assembly for
287 evolutionary and phylogenomic studies. Patterns of repeat content further indicate that genome size
288 evolution in Hymenoptera is largely driven by repetitive elements, with *Q. erythrinae* exhibiting relatively
289 low repeat divergence compared to other lineages. This high-quality assembly facilitates population
290 genomic, diagnostic, and phylogenetic analyses, including the identification of loci underlying cryptic
291 species boundaries and traits such as gall induction. In addition, recovery of a complete *Wolbachia*
292 genome directly from host sequencing data underscores the value of chromosome-level assemblies for
293 integrative host–symbiont research. Together, these resources establish the *Q. erythrinae* genome as a
294 foundational genomic model for both applied pest management and comparative hymenopteran
295 genomics.

296 **Data Availability**

297 Custom scripts, plotting input files, and alignments used for chromosome-scale synteny and repeat
298 analyses are available at https://github.com/merondun/hymenopteran_alignments and are permanently
299 archived on Zenodo (DOI: <https://doi.org/10.5281/zenodo.18157483>). The primary and alternate genome
300 assemblies are hosted at the National Center for Biotechnology Information (NCBI) under BioProject
301 Accessions PRJNA1404342 and PRJNA1404344 respectively. The sample used for the contig assembly
302 is described under BioSample SAMN54712453 and registered under the Darwin Tree of Life ID
303 iyQuaEryt1. Raw read data was submitted under SRA accessions: SRR36875831-SRR36875835.

304

305 **Acknowledgments**

306 YMZ is supported by Oak Ridge Institute for Science and Education (ORISE) fellowship. This research
307 used resources provided by the USDA-ARS project number 2040-30400-003-000D and USDA-ARS
308 SCINet project numbers 0201-88888-003-000D and 0201-88888-002-000D.

309

310 **Conflicts of interest**

311 The authors declare that the research was conducted in the absence of any commercial or financial
312 relationships that could be construed as a potential conflict of interest. All opinions expressed in this
313 paper are the authors' and do not necessarily reflect the policies and views of USDA. Mention of trade
314 names or commercial products in this publication is solely for the purpose of providing specific information
315 and does not imply recommendation or endorsement by the U.S. Government. USDA is an equal
316 opportunity provider and employer. The authors declare no conflict of interest.

317

318 **Table 1.** Assembly statistics of the *Quadrastichus erythrinae* genome contig and scaffold assemblies.

	Contig	Scaffold
Total Fragments	41	6
N50 (MB)	32.9	75.6
L50	5	3
N90 (MB)	4.2	59.7
L90	5	3
Total (MB)	399.2	399.2

319

320 **Table 2.** Assembly statistics and accession information for the eight hymenopteran genomes analyzed in
321 this study.

Species	Higher Groupings	Scaffold N50 (Mb)	Scaffolds	Size Gb	Accession
<i>Quadrastichus erythrinae</i>	Chalcidoidea, Proctotropomorpha, Parasitica	75.62	6	0.40	This Study
<i>Nasonia vitripennis</i>	Chalcidoidea, Proctotropomorpha, Parasitica	24.76	436	0.30	GCF_009193385.2
<i>Belonocnema kinseyi</i>	Cynipoidea, Proctotropomorpha, Parasitica	150.97	5520	1.54	GCF_010883055.1
<i>Diachasmimorpha longicaudata</i>	Ichneumonoidea, Parasitica	7.96	246	0.19	GCF_034640455.1
<i>Apis mellifera</i>	Apoidea, Aculeata	13.62	177	0.23	GCF_003254395.2
<i>Vespa crabro</i>	Vespoidea, Aculeata	9.77	99	0.23	GCF_910589235.1
<i>Solenopsis invicta</i>	Formicoidea, Aculeata	26.23	219	0.38	GCF_016802725.1
<i>Neodiprion pinetum</i>	Tenthredinoidea, Symphyta	41.40	112	0.27	GCF_021155775.2

322

323 **Figure 1.** *Quadrastrichus erythrinae*. A) Lateral habitus of male (left) and female (right) adult *Q. erythrinae*.
324 Photo by Erich G. Vallery, USDA Forest Service – SRS-4552, Bugwood.org, licensed under CC BY 3.0.
325 B) Galls induced by *Q. erythrinae* on wiliwili tree in Kona, Hawai'i.

326

327

328 **Figure 2.** Statistics of the *Quadrastrichus erythrinae* assembly. A) Snail plot visualization of the scaffold
329 assembly with BUSCO assessment using Hymenoptera conserved orthologs odb12. B) Hi-C contact map
330 indicates that contigs can be grouped in 5 major scaffolds. C) K-mer spectra plot showing the
331 representation graph of k-mers in the assembly relative to the raw HiFi data.

332

333 **Figure 3. Gene-based synteny across eight hymenopteran genomes.**

334 (A) JCVI karyoplot showing reciprocal best-hit gene alignments across chromosomes inferred from the
335 full genome annotation. Chromosome lengths reflect gene order only and do not represent physical sizes.
336 (B) Pairwise dot plot showing collinearity between *Quadrastrichus erythrinae* and *Nasonia vitripennis*
337 based on reciprocal best-hit alignments. (C) Pairwise counts of conserved macro-syntenic blocks inferred
338 with chromsyn using BUSCO-defined anchors, filtered for collinear blocks ≥ 100 Kb containing ≥ 2 genes.

339

340 **Figure 4. Repeat landscape across hymenopteran genomes.**

341 (A) Total repetitive DNA content was quantified for eight chromosome-level hymenopteran assemblies
342 using EarlGrey and summarized by repeat subclass. Facets show total cumulative genomic coverage
343 (Mb), number of distinct transposable element (TE) families, and percent of the genome occupied by
344 each repeat subclass. “Non-Repeat”, “Unclassified”, and “Other” categories were excluded from TE family
345 count visualizations (B) Same as above, except excluding the large-genome outlier *Belonocnema kinseyi*
346 (bottom). (C) Association between genome size (Gb) and cumulative repeat coverage (Gb) with PGLS
347 regression and Spearman correlation results annotated. (D) Same analysis excluding *B. kinseyi*.

348

349 **References:**

350 Astashyn A, Tvedte ES, Sweeney D, Sapojnikov V, Bouk N, Joukov V, Mozes E, Strope PK, Sylla PM,
351 Wagner L. 2024. Rapid and sensitive detection of genome contamination at scale with FCS-GX. *Genome*
352 *Biol.* 25:60. doi:10.1186/s13059-024-03198-7.

353 Baril T, Galbraith J, Hayward A. 2024. Earl Grey: a fully automated user-friendly transposable element
354 annotation and analysis pipeline. *Mol Biol Evol.* 41(4):msae068. doi:10.1093/molbev/msae068.

355 Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. *J Stat*
356 *Softw.* 67(1). doi:10.18637/jss.v067.i01.

357 Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF.
358 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. *Mol Phylogenet Evol.*
359 69(2):313–319. doi:10.1016/j.ympev.2012.08.023.

360 Blaimer BB, Brady SG, Buffington ML, Gates MW, Kula RR, et al. 2023. Key innovations and the
361 diversification of Hymenoptera. *Nat Commun.* 14(1):1212. doi:10.1038/s41467-023-36868-4.

362 Buchfink B, Reuter K, Drost HG. 2021. Sensitive protein alignments at tree-of-life scale using DIAMOND.
363 *Nat Methods.* 18(4):366–368. doi:10.1038/s41592-021-01101-x.

364 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+:
365 architecture and applications. *BMC Bioinformatics.* 10:421. doi:10.1186/1471-2105-10-421.

366 Challis R, Richards E, Rajan J, Cochrane G, Blaxter M. 2020. BlobToolKit: interactive quality assessment
367 of genome assemblies. *G3 (Bethesda).* 10(4):1361–1374. doi:10.1534/g3.120.401622.

368 Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using
369 phased assembly graphs with hifiasm. *Nat Methods.* 18(2):170–175. doi:10.1038/s41592-020-01056-5.

370 Cheng H, Jarvis ED, Fedrigo O, Koepfli KP, Urban L, Gemmell NJ, Li H. 2022. Haplotype-resolved
371 assembly of diploid genomes without parental data. *Nat Biotechnol.* 40(9):1332–1335.
372 doi:10.1038/s41587-022-01368-2.

373 Cong Y, Wang J, Lin Y, Chen H, Li Y, Zhang M, Zhang H, Li Z, Li X, Yu W, et al. 2022. Transposons and
374 non-coding regions drive the intrafamily differences of genome size in insects. *iScience.* 25(9):104873.
375 doi:10.1016/j.isci.2022.104873.

376 Cook HL, Sproul JS, Murray EA, Bossert S. 2025. A comparative analysis of transposable element
377 diversity and evolution across 75 bee genomes. *BMC Genomics.* 26(1):1000. doi:10.1186/s12864-025-
378 12190-9.

379 DeAngelis MM, Wang DG, Hawkins TL. 1995. Solid-phase reversible immobilization for the isolation of
380 PCR products. *Nucleic Acids Res.* 23(22):4742–4743. doi:10.1093/nar/23.22.4742.

381 Edwards RJ, Dong C, Park RF, Tobias PA. 2022. A phased chromosome-level genome and full
382 mitochondrial sequence for the dikaryotic myrtle rust pathogen, *Austropuccinia psidii*. *bioRxiv.*
383 doi:10.1101/2022.04.22.489119.

384 Frith MC, Hamada M, Horton P. 2010. Parameters for accurate genome alignment. *BMC Bioinformatics.*
385 11:80. doi:10.1186/1471-2105-11-80.

386 Gokhman VE. 2022. Comparative Karyotype Analysis of Parasitoid Hymenoptera (Insecta): Major
387 Approaches, Techniques, and Results. *Genes (Basel).* 13(5):751. doi:10.3390/genes13050751.

388 Gregory TR. 2001. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value
389 enigma. *Biol Rev Camb Philos Soc.* 76(1):65–101. doi:10.1017/S1464793100005595.

390 Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. 2020. Identifying and removing haplotypic
391 duplication in primary genome assemblies. *Bioinformatics.* 36(9):2896–2898.
392 doi:10.1093/bioinformatics/btaa025.

393 Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B,
394 Lieber M, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform
395 for reference generation and analysis. *Nat Protoc.* 8(8):1494–1512. doi:10.1038/nprot.2013.084.

396 [Jacques Dainat] NBISweden/AGAT: AGAT v1.5.1 [software]. 2025. Zenodo.
397 doi:10.5281/zenodo.3552717.

398 Kärrnäs E, Hansson C, Wahlberg N. 2025. Large-scale DNA barcoding reveals cryptic diversity in
399 eulophid wasps (Hymenoptera, Chalcidoidea, Eulophidae). *Arthropod Syst Phylogeny*. 83:415–425.
400 doi:10.3897/asp.83.e153226.

401 Kaufman LV, Yalemar J, Wright MG. 2020. Classical biological control of the erythrina gall wasp,
402 *Quadrastrichus erythrinae*, in Hawaii: conserving an endangered habitat. *Biol Control*. 142:104161.
403 doi:10.1016/j.biocontrol.2020.104161.

404 Kim IK, Delvare G, La Salle J. 2004. A new species of *Quadrastrichus* (Hymenoptera: Eulophidae): a gall-
405 inducing pest on *Erythrina* (Fabaceae). *J Hymenopt Res*. 13(2):243–249.

406 Lawniczak MKN, Durbin R, Flicek P, Lindblad-Toh K, Wei X, Archibald JM, Baker WJ, Belov K, Blaxter
407 ML, Marques Bonet T, et al. 2022. Standards recommendations for the Earth BioGenome Project. *Proc
408 Natl Acad Sci U S A*. 119(4):e2115639118. doi:10.1073/pnas.2115639118.

409 Lawrence M, Huber W, Pagès H, Aboyou P, Carlson M, Gentleman R, Morgan MT, Carey VJ. 2013.
410 Software for computing and annotating genomic ranges. *PLoS Comput Biol*. 9(8):e1003118.
411 doi:10.1371/journal.pcbi.1003118.

412 Lenth R, Piaskowski J. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package.
413 2025.

414 Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*. 34(18):3094–3100.
415 doi:10.1093/bioinformatics/bty191.

416 Lin SF, Tung GS, Yang MM. 2021. The Erythrina gall wasp *Quadrastrichus erythrinae* (Insecta:
417 Hymenoptera: Eulophidae): invasion history, ecology, infestation and management. *Forests*. 12(7):948.
418 doi:10.3390/f12070948.

419 Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO Update: Novel and
420 Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic,
421 Prokaryotic, and Viral Genomes. *Mol Biol Evol*. 38(10):4647–4654. doi:10.1093/molbev/msab199.

422 Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S. caper: Comparative Analyses of Phylogenetics and
423 Evolution in R. R package. 2025.

424 Petersen M, Armisen D, Gibbs RA, Hering L, Khila A, Mayer G, Richards S, Niehuis O, Misof B. 2019.
425 Diversity and evolution of the transposable element repertoire in arthropods with particular reference to
426 insects. *BMC Evol Biol*. 19(1):11. doi:10.1186/s12862-018-1324-9.

427 R Core Team. R: A language and environment for statistical computing [software]. 2017. R Foundation for
428 Statistical Computing, Vienna, Austria.

429 Rasplus JY, Basso C, Delvare G, Fus L, Gumovsky A, Huber JT, Polaszek A, Schmidt S, Murphy N,
430 Butterill P, et al. 2020. A first phylogenomic hypothesis for Eulophidae (Hymenoptera, Chalcidoidea). *J
431 Nat Hist*. 54(9-10):597–609. doi:10.1080/00222933.2020.1736657.

432 Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*. 30(14):2068–2069.
433 doi:10.1093/bioinformatics/btu153.

434 Sim SB, Corpuz RL, Simmonds TJ, Geib SM. 2022. HiFiAdapterFilt: a memory-efficient read processing
435 pipeline for PacBio HiFi reads. *BMC Genomics*. 23(1):157. doi:10.1186/s12864-022-08375-1.

436 Sproul JS, Hotaling S, Heckenhauer J, Powell A, Larracuente AM, Pauls SU, Kelley JL. 2023. Analyses of
437 600+ insect genomes reveal repetitive element dynamics and highlight biodiversity-scale repeat
438 annotation challenges. *Genome Res.* 33(10):1708–1717. doi:10.1101/gr.277387.122.

439 Tang H, DeBarry JD, Tan X, Wang X, Moore D, He Z, Luo M, Lee TH, Jin H, Kudrna D, et al. 2024. JCVI:
440 A versatile toolkit for comparative genomics analysis. *iMeta.* 3(4):e211. doi:10.1002/imt2.211.

441 Tegenfeldt F, Kuznetsov D, Manni M, Berkeley M, Zdobnov EM, Kriventseva EV. 2025. OrthoDB and
442 BUSCO update: annotation of orthologs with wider sampling of genomes. *Nucleic Acids Res.*
443 53(D1):D516–D522. doi:10.1093/nar/gkae987.

444 [UCD Community]. Universal Chalcidoidea Database. 2023. [accessed 2025 Nov 21].
445 <https://ucd.chalcid.org>.

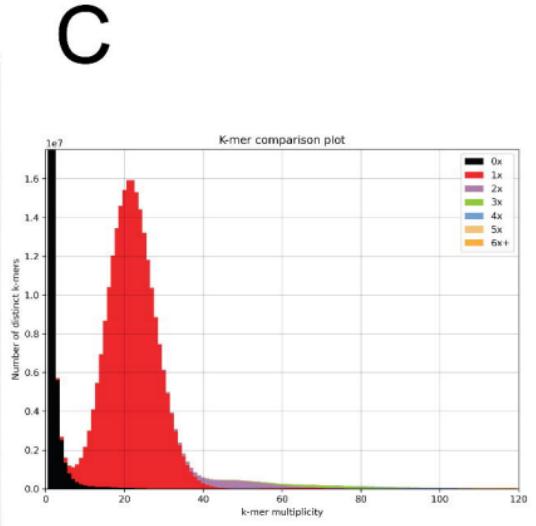
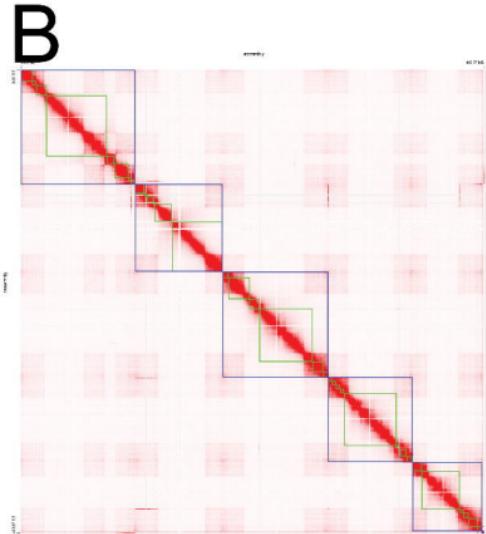
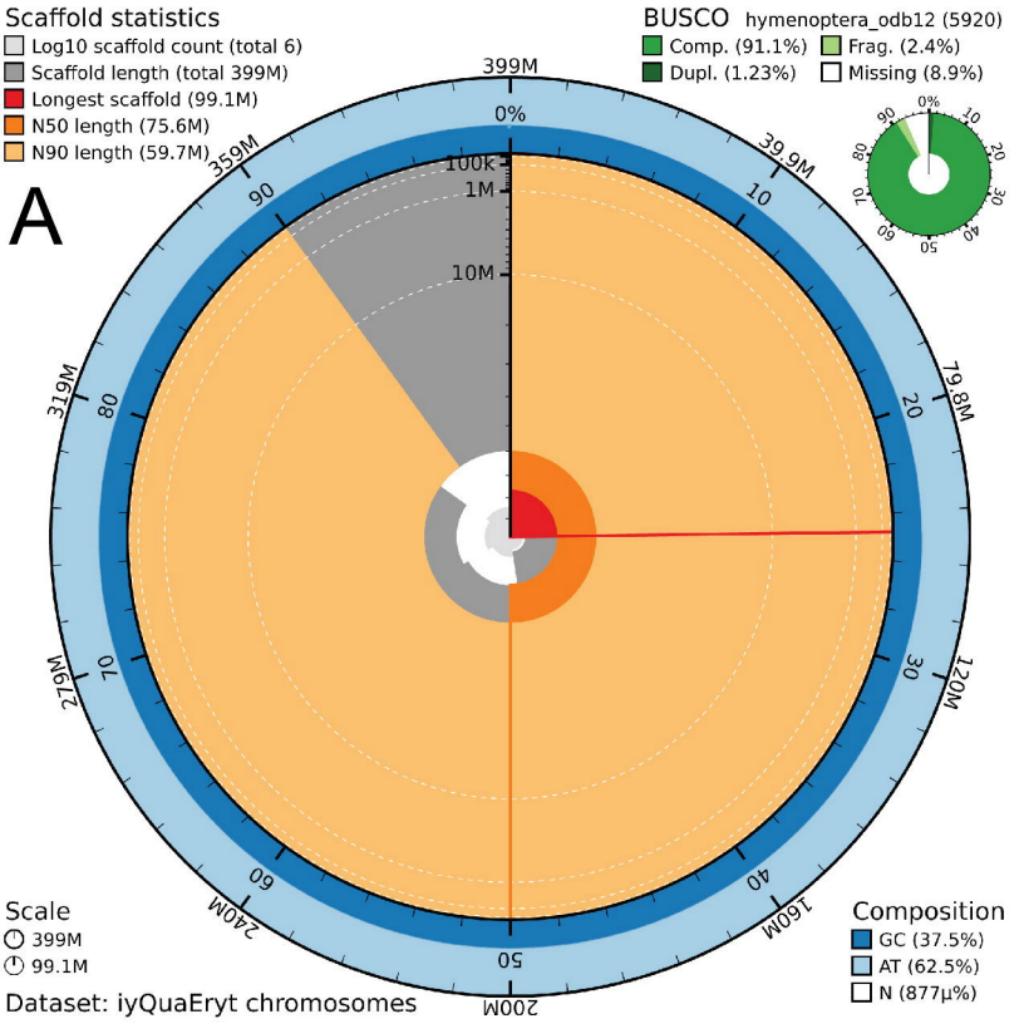
446 Uliano-Silva M, Ferreira JGRN, Krasheninnikova K, Darwin Tree of Life Consortium, Blaxter M, et al.
447 2023. MitoHiFi: a python pipeline for mitochondrial genome assembly from PacBio high-fidelity reads.
448 *BMC Bioinformatics.* 24(1):288. doi:10.1186/s12859-023-05481-8.

449 Vancaester E, Blaxter M. 2023. Phylogenomic analysis of *Wolbachia* genomes from the Darwin Tree of
450 Life biodiversity genomics project. *PLoS Biol.* 21(8):e3001972. doi:10.1371/journal.pbio.3001972.

451 Vasimuddin M, Misra S, Li H, Aluru S. 2019. Efficient architecture-aware acceleration of BWA-MEM for
452 multicore systems. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
453 p. 314–324. doi:10.1109/IPDPS.2019.00040.

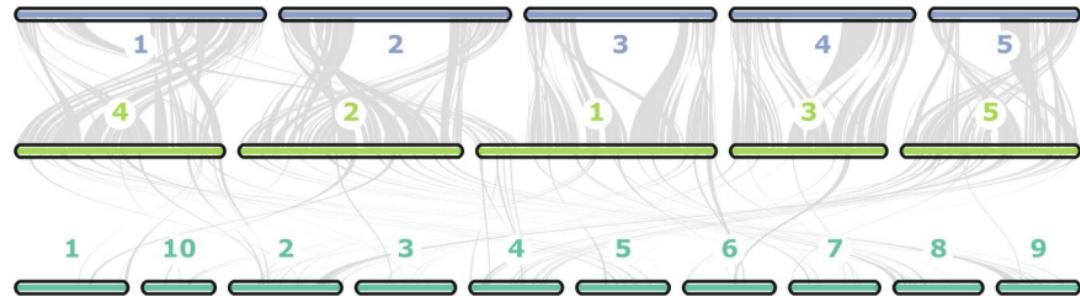
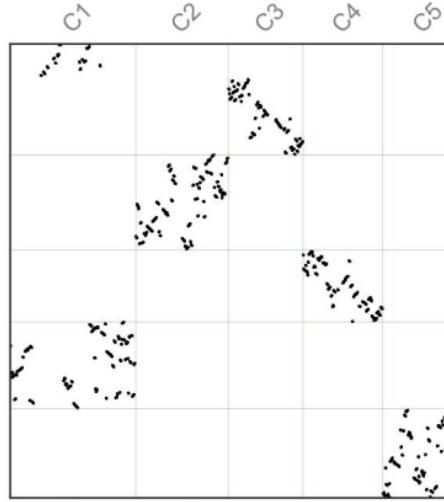
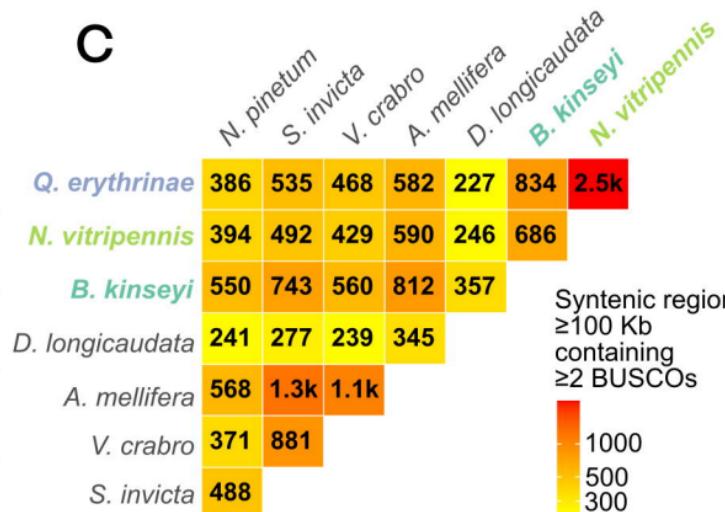
454 Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov
455 EM. 2018. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. *Mol*
456 *Biol Evol.* 35(3):543–548. doi:10.1093/molbev/msx319.

457 Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L,
458 Hester J, et al. 2019. Welcome to the Tidyverse. *J Open Source Softw.* 4(43):1686.
459 doi:10.21105/joss.01686.

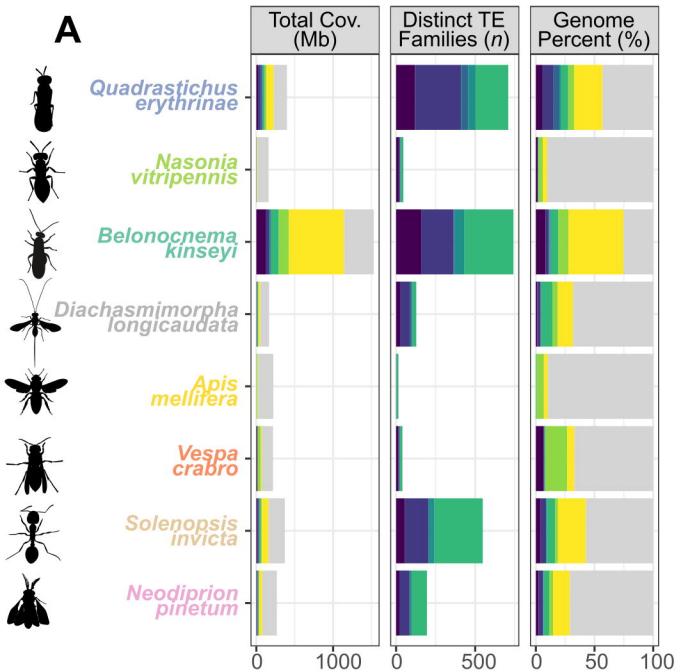



460 Wilke CO. ggridges: Ridgeline Plots in 'ggplot2'. R package. 2025.

461 Zhang YM, Gates MW, Hanson PE, Jansen-González S. 2022. Description of a Neotropical gall inducer
462 on Araceae: *Arastichus* gen. nov. (Hymenoptera, Eulophidae) and two new species. *J Hymenopt Res.*
463 92:145–172. doi:10.3897/jhr.92.86119.

464 Zhou C, McCarthy SA, Durbin R. 2023. YaHS: yet another Hi-C scaffolding tool. *Bioinformatics.*
465 39(1):btac808. doi:10.1093/bioinformatics/btac808.

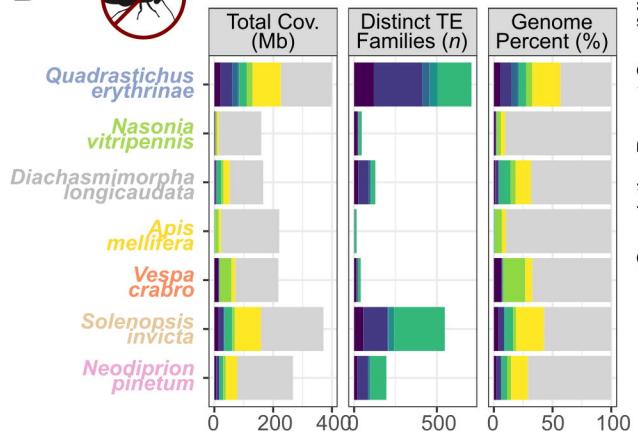



466 Zhu JC, Wang YF, Zhang YM, Wang J, Li F, Liu JX, Xiao JH, Huang DW. 2023. Evolutionary timescale of
467 chalcidoid wasps inferred from over one hundred mitochondrial genomes. *Zool Res.* 44(3):467–480.
468 doi:10.24272/j.issn.2095-8137.2023.067.

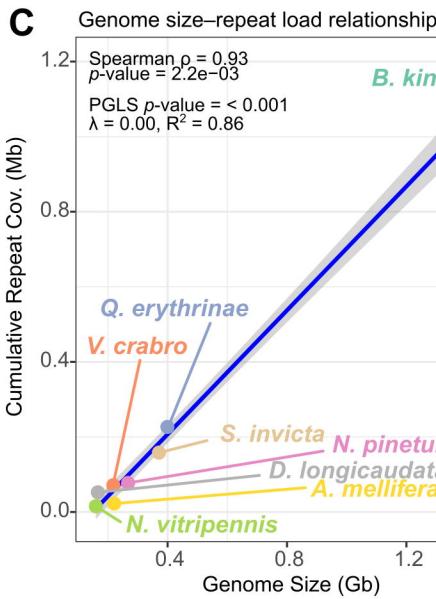
A**B**


A

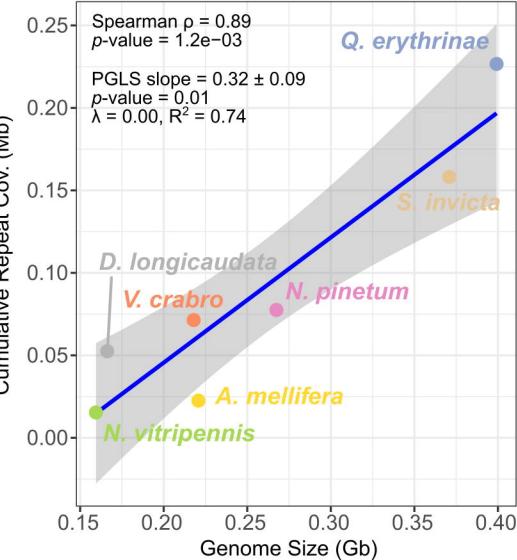
Reciprocal Best Hit alignments: > 10 gene anchors per block

B**C**


A


B

Excluding *B. kinseyi*



C

D

Excluding *B. kinseyi*

