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Abstract

The recent advances in sequencing technologies, phylogenomics and divergence dating

methods call for an integrative review of the current state of Hymenoptera systematics.

We here explore the impact of these latest developments on the Hymenoptera phylog-

eny and our understanding of the timing of Hymenoptera evolution, while identifying

the current methodological constraints and persistent knowledge gaps that warrant fur-

ther investigation. Our review highlights the lack of consensus among the backbone phy-

logeny of Hymenoptera between key phylogenomic studies, as the higher level

phylogeny remains unresolved in key nodes such as the relationships among Eusym-

phyta, the relationships within the Infraorder Proctotrupomorpha and the placements of

the superfamilies Ichneumonoidea, Ceraphronoidea and Vespoidea. Furthermore, we

underline the huge variation in divergence age estimates for Hymenoptera and detect

several major gaps and/or disagreements between the fossil record and available age

estimates, either due to the poorly studied fossil record or problematic age estimates, or

both. To better understand the timing of Hymenoptera evolution and the role of key

diversification factors, we will need continuous efforts to (i) reconcile conflicts among

morphological and molecular phylogenies, by improving taxon sampling of underrepre-

sented lineages, applying novel techniques to study morphology, making use of genome-

scale data and critically assessing incongruences in genetic markers; (ii) improve the

Hymenoptera fossil record, by exercising integrative taxonomy and bringing together

paleontologists and neontologists; and (iii) reconcile age estimates, by relying on tip dat-

ing approaches to bridge fossils, morphology and genomes across time.
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INTRODUCTION

Hymenoptera, encompassing sawflies, wasps, ants and bees, stands

out as one of the most diverse organism groups on Earth. With over

154,000 identified species (Aguiar et al., 2013; Huber, 2017; van

Noort & Broad, 2024) and potentially up to 2.5 million yet-to-be-

described species in existence (Forbes et al., 2018; Stork, 1997;

Ulrich, 1999), Hymenoptera plays a pivotal role in nearly all terrestrial

ecosystems. Furthermore, these insects hold significant economic

value, serving as parasitoids, predators and pollinators (Austin &

Dowton, 2000; Huber, 2017; Polaszek & Vilhelmsen, 2023; van

Noort & Broad, 2024).

Some of the most interesting and ongoing research questions on

Hymenoptera concern the evolution and shifts in their lifestyles,Yuanmeng Miles Zhang and Tamara Spasojevic contributed equally to this study.
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which may have contributed to the diversification across the order.

The earliest lineages of Hymenoptera, sawflies (suborder Symphyta),

predominantly exhibit phytophagy, with the evolution of parasitoidism

likely occurring only once within Hymenoptera. This transition likely

took place within the common ancestor of the symphytan Orussoidea

and wasps, bees and ants (suborder Apocrita) (Blaimer et al., 2023;

Polaszek & Vilhelmsen, 2023; Vilhelmsen et al., 2024). This first para-

sitoid was likely an idiobiont targeting wood-boring beetle larvae,

using a simple strategy of immobilizing their host at an early stage of

development and preventing further growth or development of the

host. From this modest origin, a remarkable diversification ensued,

leading to a variety of lifestyles, including koinobiont parasitism,

hyperparasitoidism, kleptoparasitism/parasitoidism, incorporation of

polydnaviruses and predatory nest provisioning (Polaszek &

Vilhelmsen, 2023; van Noort & Broad, 2024). Conversely, several line-

ages within Apocrita have subsequently reverted to phytophagy,

representing a potential key innovation for the overall diversification

of the group, as well as influencing the evolution of eusociality

(Blaimer et al., 2023).

Our understanding of these remarkable evolutionary patterns is

highly dependent on a resolved and time-calibrated phylogeny of

Hymenoptera. Rasnitsyn (1988) proposed one of the first classifica-

tions of Hymenoptera, and various aspects of this classification are

still accepted today. This includes Symphyta being a paraphyletic

grade with respect to Apocrita, and a single presumed origin of parasi-

toidism during the evolution of Hymenoptera, with the parasitoid

symphytan superfamily Orussoidea consistently found as the sister

group to Apocrita. Rasnitsyn (1988) also divided Apocrita into four

Infraorders: Ichneumonomorpha (Ichneumonoidea), Proctotrupomor-

pha (Cynipoidea, Platygastroidea, Chalcidoidea, Mymarommatoidea

and Proctotrupoidea, and Diaprioidea), Evaniomorpha (Evanioidea,

Trigonaloidea, Ceraphronoidea, Stephanoidea and Megalyroidea) and

Vespomorpha (Aculeata), all of which are still used regularly. A series

of phylogenetic studies using morphological, molecular (ribosomal,

mitochondrial and nuclear loci) and combined datasets were published

in the early 2010s as part of the Hymenoptera Tree of Life Project,

greatly improving our understanding of the higher level relationships

of Hymenoptera (e.g., Heraty et al., 2011; Klopfstein et al., 2013;

Schulmeister, 2003; Sharkey et al., 2012; Vilhelmsen, 2001;

Vilhelmsen et al., 2010). Sharkey (2007) provided the last comprehen-

sive overview of the higher level phylogeny and classification of

Hymenoptera, in which he recognized Diaprioidea as a distinct super-

family. The total number of superfamilies ranged from 20 to 27, with

89–132 families recognized in the literature (Aguiar et al., 2013;

Goulet & Huber, 1993; Sharkey, 2007). At the time of writing this

paper (April 2024), 29 superfamilies and 143 extant families are

recognized in light of recent taxonomic changes, most notably within

Proctotrupomorpha and Aculeata (Figure 1 and Table S1a). In addition,

six additional extinct superfamilies and around 67 more extinct fami-

lies are currently recognized (Table S1b).

The history of insect phylogenetics has been reviewed exten-

sively in the literature (e.g., Kjer et al., 2016; Tihelka et al., 2021;

Wipfler et al., 2016; Young & Gillung, 2020; Zhang et al., 2019),

including studies focusing more on specific lineages of Hymenoptera

(e.g., Borowiec, Moreau, & Rabeling, 2021; Danforth et al., 2013;

Polaszek & Vilhelmsen, 2023; Sharkey, 2007; van Noort &

Broad, 2024). For this review, we chose to focus mostly on the recent

advances in Hymenoptera phylogenomics and evolutionary research

starting around 2014; we found that around this pivotal time, the use

of second-generation/massively parallel sequencing found broad

adoption in the community, allowing the generation of large quantities

of genetic markers in comparison with traditional Sanger sequencing

(from here on referred to as multilocus) across various lineages of

Hymenoptera.

In parallel, the field of divergence time estimation has been devel-

oping rapidly, powered by phylogenomic advances that keep provid-

ing more robust phylogenies, new bioinformatic tools and

mathematical algorithms that allow for more complex evolutionary

models, and greater emphasis on the fossil record, which is providing

increasingly reliable and older evidence for calibrating phylogenies

(reviewed extensively in Donoghue & Yang, 2016; Guindon, 2020;

López-Antoñanzas et al., 2022; O’Reilly et al., 2015; Wright

et al., 2022). As a result, there are dozens of dating studies on Hyme-

noptera using different dating approaches, aiming at inferring the tim-

ing of origin of lineages at different taxonomic levels and

understanding diversification patterns and speciation drivers in this

megadiverse order, but these have never been reviewed

systematically.

We start this review by providing an overview of both phyloge-

nomic and divergence dating methods and their application in Hyme-

noptera. Thereafter, we give a detailed review of the major taxonomic

changes in the higher phylogeny and classification across Hymenop-

tera, in light of phylogenomic data and divergence age estimates.

Finally, we discuss the prospects and challenges for resolving the phy-

logeny of Hymenoptera and improving age estimates, and summarize

open questions in Hymenoptera systematics and evolution.

OVERVIEW OF PHYLOGENOMIC METHODS

Mitochondrial genomes have been among the first to be sequenced

given the relative ease of data acquisition and have often been pub-

lished in single-species contributions, eventually leading to larger

datasets examining patterns across superfamilies (e.g., Menezes

et al., 2024; Tang et al., 2019; Zheng et al., 2022; Zhu et al., 2023).

This approach is further expanded with the ability to extract mitoge-

nomic data from sequence data acquired through targeted enrichment

approaches (Allio et al., 2020), which can provide complementary data

to the nuclear loci that were the primary targets. However, mitochon-

drial datasets can sometimes lead to contradictory results to those of

their nuclear counterparts. This mitochondrial vs nuclear discordance

can be the result of a combination of factors, including high levels of

substitution saturation, elevated Adenine/Thymine (AT) content,

nuclear mitochondrial DNA segments, or Wolbachia (Allio et al., 2020).

Menezes et al. (2024) have shown that certain mitochondrial genes

(COI, 16S, NAD5 and NAD2) perform better than others (ATP6, COII
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F I GU R E 1 Summary of the phylogenetic relationships of Hymenoptera, represented by 143 extant families. The phylogeny follows the
preferred analysis of Blaimer et al. (2023; C-1 topology) except for Chalcidoidea and Symphyta. The phylogeny of Chalcidoidea follows the
topology and taxonomy of Cruaud et al. (2024) and the Symphyta follow Wutke et al. (2024). Taxa marked with asterisks have been grafted onto
the phylogeny based on findings from other studies. The superfamily Proctotrupomorpha is indicated with a dagger because of the inferred
paraphyly with respect to Roproniidae. The newly recognized apoid families Entomosericidae and Eremiaspheciidae have been grafted onto the
tree with unresolved phylogenetic position. All photos by Y. Miles Zhang.
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and 12S) in recovering a concordant relationship with nuclear markers

within Vespidae, but whether this pattern holds across Hymenoptera

is unknown.

The first published phylogenomic studies of Hymenoptera using

nuclear genes mainly utilized transcriptomes (Johnson et al., 2013;

Peters et al., 2017). This is largely due to the 1KITE (1K Insect Tran-

scriptome Evolution) project, which led to the seminal Misof et al.

(2014) study of insect phylogenomics, in which Hymenoptera was

recovered as the sister group to the remaining Holometabola. Subse-

quent 1KITE projects include a targeted study on Hymenoptera

(Peters et al., 2017), and studies with a broader sampling of specific

groups including Apoidea (Sann et al., 2018, 2021) and Chalcidoidea

(Peters et al., 2018; Zhang, Lindsey, et al., 2020). However, one major

limitation of transcriptomic studies is that only fresh specimens can

be used, as RNA degrades rapidly, thus often limiting the breadth of

taxonomic sampling to common or easily obtained species.

One major advantage of targeted capture methods such as

anchored hybrid enrichment (AHE, Lemmon et al., 2012) or sequenc-

ing ultraconserved elements (UCEs, Faircloth et al., 2012) over tran-

scriptomics is the ability to recover data from older specimens, a field

which is sometimes referred to as ‘museomics’. This advancement

allowed for more active use of the vast entomological collections from

natural history museums, which often house rare or even extinct/

extirpated taxa to be included in phylogenomic studies. A few studies

have used different targeted capture methods on groups such as Ves-

pidae (Bank et al., 2017; Piekarski et al., 2018), Chalcidoidea (Baker

et al., 2020; Maletti et al., 2021; Zhang, Heraty, et al., 2022), Ichneu-

monoidea (Klopfstein et al., 2019; Sharanowski et al., 2021) and Apoi-

dea (Sann et al., 2018), whereas the majority of recent phylogenomic

studies on Hymenoptera utilized UCEs (Blaimer et al., 2023; Branstet-

ter, Danforth, et al., 2017; Faircloth et al., 2015). Unlike the other tar-

geted capture methods mentioned above which exclusively focus on

protein-coding genes and generally target <1000 loci, the widely used

HymenopteraV2 UCE probes target >2500 loci and include both

exonic and intronic regions (Bossert & Danforth, 2018; Zhang

et al., 2019). The target capture method, particularly UCE phyloge-

nomics, offers notable advantages in its ability to sequence hundreds

of loci from a single, non-destructively extracted, minuscule dried

specimen with exceedingly low DNA yield (e.g., Trichogrammatidae or

Mymaridae, which can measure less than 0.5 mm in length and yield

less <1–5 ng of DNA), especially when combined with techniques

such as whole-genome amplification (Cruaud et al., 2018, 2019). This

presents several significant implications: (1) Utilizing a single specimen

mitigates the risk of potential contamination that may arise when

sequencing multiple specimens from distinct cryptic or closely related

species; (2) enabling the use of historical specimens, some over a cen-

tury old, with severely degraded DNA and occasionally representing

rare lineages that have only been collected a few times; and (3) facili-

tating the vouchering of the extracted specimen, thus allowing for

subsequent re-examination for error-checking purposes and/or

for taxonomic studies. Additionally, the accompanying, regularly

updated open-source pipeline Phyluce (Faircloth, 2016) allows the

inclusion of UCE sequence data from various sources. To this end,

genomes, transcriptomes and target-enriched UCE loci can be com-

bined in one analysis (Bossert et al., 2019; Kieran et al., 2019; Kulkarni

et al., 2021). Finally, the currently used, improved Hymenoptera V2

UCE bait sets were developed with downward compatibility in mind:

Branstetter, Longino, et al. (2017) incorporated additional genomes

for the bait design, thus increasing the number of loci captured,

yet also assuring overlapping loci with the initial Hymenoptera V1 bait

set. This has led to an exponential increase of large-scale phyloge-

nomic research on Ichneumonoidea (e.g., Jasso-Martínez et al., 2022;

Santos et al., 2019, 2021, 2022), Chalcidoidea (e.g., Cruaud

et al., 2021, 2024 Rasplus et al., 2020), Cynipoidea (e.g., Blaimer

et al., 2020; Ward et al., 2022, 2024; Zhang, Buffington, et al., 2020),

Apoidea and especially bees (e.g., Bossert et al., 2022; Sless

et al., 2022), or Formicoidea (e.g., Blaimer et al., 2018;

Borowiec, 2019; Branstetter, Longino, et al., 2017). The Blaimer et al.

(2023) study stands out as the taxon-densest time-calibrated phylog-

eny of Hymenoptera to date (765 taxa in �120 currently recognized

families), delving into the origins of crucial innovations that may have

led to the significant diversity of the order Hymenoptera that we see

today. Surprisingly, among the four traits examined—1. wasp waist of

Apocrita, 2. stinger of Aculeata, 3. parasitoidism and 4. secondary

phytophagy—transitions to secondary phytophagy (reverting from

parasitoidism) emerged as a significant factor influencing the diversifi-

cation rate in Hymenoptera.

BRIEF HISTORY OF DIVERGENCE DATING

The fossil record is the first and essential evidence for reconstructing

the evolutionary history of life. Rasnitsyn (1988) provided one of the

first timetrees for Hymenoptera based solely on the comprehensive

fossil record at the time, with the presence of the first undisputed

Hymenoptera in the Middle to Late Triassic. Further, he concluded

that around half of the superfamilies occurred during the Jurassic and

most of the extant families during the Early Cretaceous

(Rasnitsyn, 1988; Rasnitsyn & Quicke, 2002). The very patchy nature

of the fossil record is also depicted, with the record of several families

having long gaps spanning tens of millions of years. These time trees

presented a significant advance at the time, however, they must be

understood as minimum age estimates for the origin of Hymenoptera

families. This is due to both temporal and spatial bias in the fossil

record, which implies that the earliest known fossils are almost cer-

tainly younger than the first living members of the families. Mean-

while, some of the methods for establishing maximum ages based on

the fossil record have been proposed, which take into account fossil

richness, average paleontological species duration and preservation

potential (Marshall, 2019), but none of which has to our knowledge

been applied to Hymenoptera yet.

The establishment of the molecular clock hypothesis, which sug-

gests the correlation of molecular rates of evolution and time, has led

to the development of various parametric approaches for divergence

time estimation based on molecular data, as well as the semipara-

metric penalized likelihood method (Paradis, 2013; Sanderson, 2002).

4 ZHANG ET AL.
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The latter, for example, has been applied in Ichneumonoidea for dat-

ing the origin of bracoviruses (Whitfield, 2002) and microgastroid

wasps (Murphy et al., 2008). These approaches have quickly been

replaced by Bayesian methods and specifically the node dating

approach, where fossils are used to calibrate the molecular clock,

thereby providing a hard minimum age for the node to which they are

assigned to. This approach allows for estimating the uncertainty in the

obtained divergence dates, and thus also provides maximum age esti-

mates for nodes. The majority of dating studies in Hymenoptera

(around 70%) apply a node-dating approach to calibrate the molecular

clock (e.g., Blaimer et al., 2023; Branstetter, Danforth, et al., 2017;

Cardinal & Danforth, 2013; Niu et al., 2022; Nyman et al., 2019;

Peters et al., 2017; Sann et al., 2018; Tang et al., 2019). However, sev-

eral conceptual concerns have been raised about node dating. Specifi-

cally, three major limitations of node dating have been discussed in

the literature: (1) node dating cannot consider uncertainty in the inter-

pretation of fossils and its phylogenetic placement, (2) it requires set-

ting a node age prior where the choice of the shape and maximum of

the prior distribution is essentially arbitrary and (3) there might be

interactions between the node and tree age priors (Ho &

Phillips, 2009; Ronquist et al., 2012).

As a response to the observed issues of the node dating strategy,

so-called tip dating approaches have been developed, where fossils

are treated as tips of a phylogeny (Pyron, 2011; Ronquist et al., 2012).

Their placement can either be inferred using morphological data, that

is, total-evidence tip dating (Ronquist et al., 2012), or it can be con-

strained to a clade to account for uncertainty in the fossil placement,

that is, tip dating under the unresolved Fossilized Birth-Death (FBD)

tree prior (Heath et al., 2014). The FBD prior considers that diversifi-

cation processes (speciation and extinction) give rise to phylogenies

and explicitly incorporates the fossilization process into the model

(Heath et al., 2014). Subsequently, various extensions to the tip

dating approach under the FBD prior have been developed (e.g.,

Gavryushkina et al., 2014; Zhang et al., 2016, 2023). Interestingly,

since the seminal total-evidence tip dating study by Ronquist et al.

(2012) on Hymenoptera, the order has become a model group for

testing the performance of the newly developed FBD models, allow-

ing us to assess model-dependent variation in the age estimates for

Hymenoptera (Zhang et al., 2016, 2023). Next to these studies, there

have been only a handful of tip dating studies on lower taxonomic

levels, concerning Apoidea (Almeida et al., 2023; Bossert

et al., 2022; Gonzalez et al., 2019), Chrysididae (Lucena &

Almeida, 2022), Evanioidea (Jouault et al., 2022), Ichneumonidae

(Santos et al., 2022; Spasojevic et al., 2021) and Stephanidae (Ge

et al., 2023).

REVIEW OF MAJOR TAXONOMIC CHANGES
AND DATE ESTIMATES

In this section we provide a review of major phylogenetic/genomics

studies across Hymenoptera from �2014 on and their implications for

the systematics of the group, with a particular focus on three large-

scale studies using either transcriptomes (Peters et al., 2017) or UCEs

(Blaimer et al., 2023; Branstetter, Danforth, et al., 2017). Names for

informal higher groupings such as Proctotrupomorpha and Evanio-

morpha, along with valid superfamilies and families also follow these

three studies. Our phylogeny (Figures 1 and 2) largely follows Blaimer

et al. (2023) as it is the taxon-densest study to date, while certain

family-level relationships are further fine-tuned based on studies that

focus on the respective groups (Boudinot et al., 2022; Chen

et al., 2021; Cruaud et al., 2024; Hearn et al., 2024; Malm &

Nyman, 2015; Niu et al., 2022; Sann et al., 2018, 2021).

We also review divergence age estimates for the major higher

groupings within Hymenoptera (suborders, superfamilies and families)

and mention some example studies on lower taxonomic levels. For

this purpose, we compiled an exhaustive list of dating studies on

Hymenoptera and therein reported divergence age estimates and con-

fidence intervals (Table S2). If not stated otherwise, the age estimates

reported in the main text below are derived from node dating studies

and represent either mean or median estimates for crown-groups.

Moreover, for each taxon, we only discuss the estimates from studies

specifically aiming at inferring the age of that taxon, thus omitting

studies with inappropriate sampling of the target taxon. For superfam-

ilies, we mention estimates from studies focusing on the higher level

relationships of Hymenoptera if they included more than one taxon

for a superfamily and if the sampling was not restricted to a couple of

recently diverged taxa. If several sensitivity analyses were performed

in a dating study, we here reported the estimates from the preferred

analysis only, which was either labelled as such by the authors of the

study or inferred by us from the text of the study. Finally, we compare

the current age estimates to the fossil record of Hymenoptera, which

we compiled from the Paleobiology Database (PaleoBioDB; accessed

on 4 January 2024) and relevant literature (Table S3a–c). In the main

text of the manuscript, the age of fossils and relevant compression

and amber deposits is given as a mean of the minimum and maximum

age reported in the Paleobiology Database, except for Baltic amber,

where we gave a conservative range of 48–34 Ma due to the large

uncertainty in the age of the amber (but see Sadowski

et al., 2017, 2020).

Hymenoptera

Our comprehension of the evolutionary relationships within Hyme-

noptera is expanding rapidly, resulting in significant advancements

from large-scale phylogenomic studies (Blaimer et al., 2023; Branstet-

ter, Danforth, et al., 2017; Peters et al., 2017). Despite the substantial

improvement in taxa and locus sampling, certain pivotal relationships

among Hymenoptera remain controversial and warrant attention as

notable challenges (Figure 1).

1. The Eusymphyta problem: The relationships among the most

ancient lineages of Hymenoptera, particularly within Eusymphyta

(Pamphilioidea, Xyeloidea, Tenthredinoidea), are unresolved. The

question of whether Eusymphyta forms a monophyletic group

EVOLVING PERSPECTIVES IN Hymenoptera SYSTEMATICS 5
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Tang et al. 2019

F I GU R E 2 Legend on next page.
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(Peters et al., 2017) or represents an evolutionary grade, with Xyeloi-

dea (Wutke et al., 2024) or Tenthredinoidea (Blaimer et al., 2023) as

the earliest branching lineage, demands further investigation (Figure 1,

inset 1A/1B). Wutke et al. (2024) demonstrated that the inclusion of

distantly related, non-Hymenopteran outgroups can drastically change

the ingroup topology of the symphytans, whereas inferring the likely

root position using a non-reversible Markov model could circumvent

this problem. Using the latter approach, they have consistently recov-

ered Xyelidae as the most ancient lineage of Hymenoptera (Wutke

et al., 2024). This position of Xyelidae is also in agreement with both

the most comprehensive morphological studies (Beutel &

Vilhelmsen, 2007; Schulmeister, 2003; Vilhelmsen, 2001) and paleon-

tological evidence, as Xyelidae appear well before any other symphy-

tans, including Tenthredinoidea, in the fossil record (Table S3b,c).

2. The Proctotrupomorpha problem: The position of the superfamily

Cynipoidea within Proctotrupomorpha remains unresolved, with

conflicting hypotheses suggesting it either as the sister to all other

Proctotrupomorpha using transcriptome data (Peters et al., 2017),

or forming a clade with Platygastroidea and both as the sister group

to other Proctotrupomorpha in some multilocus, total-evidence and

UCE studies (Blaimer et al., 2023; Klopfstein et al., 2013) (Figure 1,

inset 2A/2B). Additionally, Roproniidae renders Proctotrupoidea

paraphyletic in the two UCE studies (Blaimer et al., 2023; Branstet-

ter, Danforth, et al., 2017), despite its placement within the super-

family in earlier molecular works (Heraty et al., 2011; Klopfstein

et al., 2013). The morphological evidence is also inconclusive regard-

ing the relationships among superfamilies of Proctotrupomorpha. A

sister relationship of Cynipoidea + Platygastroidea has only been

occasionally and weakly supported, often with homoplastic charac-

ters (Sharkey et al., 2012), while there has been more convincing

but also disputable morphological evidence for a close relationship

of Cynipoidea with Diapriidae, Platygastroidea and Proctotrupoidea

(Vilhelmsen et al., 2010). Ultrastructural characteristics of the sper-

matozoa support exclusion of Cynipoidea from Proctotrupomorpha

(Lino-Neto & Dolder, 2001), while the ovipositor morphology

(i.e., non-overlapping lower valves) separates both Cynipoidea and

three Proctotrupoidea families (Heloridae, Pelecinidae and Ropronii-

dae) from the remaining Proctotrupomorpha (Quicke et al., 1994).

Looking at the fossil record, Proctotrupoidea is by far the oldest

superfamily of Proctotrupomorpha, with fossil representatives of

three extant families (Heloridae, Pelecinidae and Roproniidae) occur-

ring already during the Middle to Late Jurassic (Shih et al., 2009,

2011). Thus, the fossil record rather supports the molecular phylog-

enies that recovered Cynipoidea and Platygastroidea as sister to

Proctotrupoidea plus the remaining Proctotrupomorpha.

3. The Ichneumonoidea sister group problem: The placement of the

superfamily Ichneumonoidea has always been unstable, being

recovered either as the sister to Proctotrupomorpha in a four-gene

analysis (Heraty et al., 2011), or as sister to the rest of Apocrita +

Orussoidea in a study which expanded on the Heraty et al. (2011)

study by adding three additional nuclear loci (Klopfstein

et al., 2013). This uncertainty is also reflected in the phylogenomic

data, with Ichneumonoidea being sometimes recovered as the sis-

ter to the rest of Apocrita excluding Orussoidea (Blaimer et al.,

2023; Branstetter, Danforth, et al., 2017). Alternatively, Ichneumo-

noidea has also been recovered as the sister group to Ceraphronoi-

dea, resulting in a monophyletic ‘Parasitoida’ clade alongside

Proctotrupomorpha (Blaimer et al., 2023; Peters et al., 2017)

(Figure 1, inset 3). This uncertainty affects our interpretation of

which lineage represents the earliest apocritan parasitoids. The

morphological analyses were either inconclusive regarding

the position of Ichneumonoidea (e.g., Sharkey & Roy, 2002) or they

recovered the superfamily as the sister group to Aculeata

(e.g., Ronquist et al., 1999; Vilhelmsen et al., 2010)—a relationship

supported by what has been interpreted as unconvincing morpho-

logical evidence and refuted by most molecular studies.

4. The Ceraphronoidea problem: Tied to the Ichneumonoidea sister

group problem above, the positioning of Ceraphronoidea is con-

tentious, with hypotheses placing it either as the sister to Ichneu-

monoidea (Blaimer et al., 2023; Peters et al., 2017) or as part of

Evaniomorpha sensu lato (Blaimer et al., 2023; Branstetter,

Danforth, et al., 2017; Heraty et al., 2011; Klopfstein et al., 2013)

(Figure 1, inset 4A/4B). Morphological analyses recovered Ceraph-

ronoidea either nested within Proctotrupomorpha (Ronquist

et al., 1999; Sharkey & Roy, 2002) or as a sister group to Megalyr-

oidea and close to other traditional Evaniomorpha (Vilhelmsen

et al., 2010), while there has been no clear morphological evidence

for a sister relationship of Ichneumonoidea and Ceraphronoidea.

5. The Vespoidea problem: The placement of superfamily Vespoidea

within Aculeata presents another puzzle, with conflicting results

suggesting it either as the sister to the rest of Aculeata using tran-

scriptome data (Peters et al., 2017), or as the sister group to some

major lineages within Aculeata based on total-evidence, multilocus

and UCE data (Blaimer et al., 2023; Branstetter, Danforth,

et al., 2017; Klopfstein et al., 2013; Sharkey et al., 2012) (Figure 1,

inset 5A/5B). The morphological studies have failed to recover a

monophyletic Vespoidea sensu Pilgrim et al. (2008) (Brothers,

1999; Ronquist et al., 1999; Sharkey et al., 2012) and thus provide

no support for any of the recovered placement of Vespoidea

within Aculeata in molecular studies.

F I GU R E 2 Select divergence time estimates of crown-group Hymenoptera and higher level clades within the order. The phylogeny follows
Blaimer et al. (2023), except for the phylogeny of Symphyta, which follows Wutke et al. (2024). Black dashed lines leading to Hymenoptera,
Apocrita, Vespina and Unicalcarida are not part of the phylogenetic tree but indicate higher level groupings at the respective nodes. The median
divergence times of Ronquist et al. (2012) are identical within individual groups and correspond to the divergences of their figure S2 (see 10.
5061/dryad.j2r64). Further explanation for alternative dating analyses in each study can be found in original publications. For a compilation of
Hymenoptera divergence times see Table S2. A comprehensive list of Hymenoptera fossils, including potential stem-group representatives, can
be found in Table S3.
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The reported age estimates from molecular dating studies for

crown-group Hymenoptera range from the Early Mississippian in the

Carboniferous (�350 million years, from here on abbreviated as Ma;

excluding significantly older and clearly unrealistic estimates) (Zhang

et al., 2016, 2023) to the Middle Triassic (�240) (Misof et al., 2014;

Tong et al., 2015; Wutke et al., 2024), depending on the time diver-

gence estimation method, model parameter settings, choice of the cal-

ibration points and the way the sampling of extant taxa is modelled

(Blaimer et al., 2023; Misof et al., 2014; Peters et al., 2017; Ronquist

et al., 2012; Tong et al., 2015; Zhang et al., 2016, 2023) (Figure 2 and

Table S2). While the youngest of the age estimates (coming from

studies aimed at dating a comprehensive insect phylogeny) would sat-

isfy the hypothesis of co-diversification of Hymenoptera and angio-

sperms during the Cretaceous (Barba-Montoya et al., 2018; Coiro

et al., 2019; Magallón et al., 2015; Ramírez-Barahona et al., 2020), the

younger dates are very close to the age of the oldest undisputed

Hymenoptera fossils, which are likely members of the family Xyelidae

(242–237 Ma, Middle Triassic) (Kopylov, 2014; Rasnitsyn, 1964,

1969). This leaves little to no space for the discovery of older fossils,

which is incompatible with the widespread distribution of Xyelidae

already during the Middle to Late Triassic, ranging from Argentina

(Lara et al., 2014) to South Africa (Schlüter, 2000), Europe (unde-

scribed; Montagna et al., 2024), Middle Asia (Kopylov, 2014;

Rasnitsyn, 1964, 1969), Japan (Oyama & Maeda, 2020) and Australia

(Engel, 2005; Riek, 1955). Instead, the fossil record implies that the

family and, thus, also the crown-group Hymenoptera must have origi-

nated earlier, possibly just after or even before the Permian–Triassic

mass extinction event (�252 Ma). On the other hand, the oldest age

estimates suggest the existence of long ghost lineages, sometimes

spanning more than 100 Ma, which has been deemed unlikely by

some authors (Zhang et al., 2016, 2023). The two most recent dating

efforts on Hymenoptera, one based on node dating of the most com-

prehensive phylogeny of Hymenoptera to date (Blaimer et al., 2023)

and the other aiming to reconcile age estimates for Hymenoptera

within the total-evidence dating framework (Zhang et al., 2023), seem

to converge on age estimates of �280 Ma (mid- to early Permian) for

the origin of the crown-group Hymenoptera. These estimates are also

in agreement with the recent recalibration of the Misof et al. (2014)

insect phylogeny following the discovery of several key insect fossils

from the Early Triassic Monte San Giorgio Formation (�240 Ma)

(Montagna et al., 2019). Despite this convergence of the latest stud-

ies, the age of the crown-group Hymenoptera should still be scruti-

nized, given the considerable confidence intervals around the

estimates of Montagna et al. (2019), sensitivity of node dating studies

to taxon sampling and calibration points, and complexity of total-

evidence tip dating analyses coupled with our poor knowledge of

Hymenoptera diversity (see below).

Symphyta

The monophyly and placement of the ancient superfamily Xyeloidea

have been historically controversial. The superfamily consists of a

single family Xyelidae and two subfamilies (Xyelinae and Macroxyeli-

nae), either being monophyletic or paraphyletic with respect to the

remaining Hymenoptera, depending on the data type and analyses

used (Heraty et al., 2011; Rasnitsyn, 1988; Schulmeister

et al., 2002, 2003; Sharkey et al., 2012). All published phylogenomic

studies to date that have included both subfamilies have shown Xye-

loidea to be monophyletic (Niu et al., 2022; Wutke et al., 2024). Xye-

loidea, Pamphilioidea and Tenthredinoidea were recovered as a

monophyletic group (= ‘Eusymphyta’) by Peters et al. (2017) using

transcriptome data. Branstetter, Danforth, et al. (2017) recovered a

relationship of Xyeloidea, followed by Pamphilioidea, and then Ten-

thredinoidea as the sister to the rest of Hymenoptera (Unicalcarida);

however, they did not include non-Hymenoptera outgroups and

instead rooted the tree on Xyelidae. Blaimer et al. (2023), which also

used UCE data but with non-Hymenoptera outgroups, did not recover

a monophyletic Eusymphyta similar to Branstetter, Danforth, et al.

(2017). However, in their study, it is the superfamily Tenthredinoidea

that was the sister to the remaining Hymenoptera (Figure 1, inset

1A/1B). A newly published study focusing on Symphyta using UCEs

included all extant symphytan families and recovered Xyeloidea as sis-

ter to the rest of Hymenoptera, followed by Tenthredinoidea +

(Pamphilioidea + Unicalcarida) in their preferred tree not including

outgroups (Wutke et al., 2024; Figure 1 inset 1A/1B). However, alter-

native relationships within the same Wutke et al. (2024) study also

recovered different combinations between Xyelidae, Pamphilioidea

and Tenthredinoidea when non-Hymenoptera outgroups were

included, which could contribute reconstruction artefacts stemming

from both very long branches connecting Hymenoptera to the out-

groups, and the short internodes between the early branching super-

families. Within Tenthredinoidea, Athaliidae and Heptamelidae are

now recognized as distinct families, while Zenarginae is not supported

as a distinct family (Malm & Nyman, 2015; Niu et al., 2022; Wutke

et al., 2024). The superfamilies Siricoidea and Cephoidea remained

strongly supported in all studies, and the enigmatic parasitoid super-

family Orussoidea is consistently recovered as the sister group to the

remaining Apocrita, a grouping referred to as Vespina, to mark the

beginning of parasitoidism within Hymenoptera (Blaimer et al., 2023;

Peters et al., 2017; Wutke et al., 2024).

Symphytans received substantial attention in the context of

divergence time estimation, with two main studies focusing on the

suborder as a whole (Nyman et al., 2019; Wutke et al., 2024).

The reported ages for Tenthredinoidea vary considerably, from the

Late Triassic (�235 Ma) (Niu et al., 2022), over most of the Jurassic

(195–170 Ma) (Blaimer et al., 2023; Isaka & Sato, 2015; Nyman

et al., 2019; Wutke et al., 2024) to the Early Cretaceous (137 Ma)

(Peters et al., 2017), depending on the taxon sampling, choice of cali-

bration points and the inferred position of Tenthredinoidea relative to

the other sawfly lineages. Regarding the remaining symphytan super-

families, the age of crown-group Pamphilioidea has been estimated to

the Middle Jurassic (174–165 Ma), Orussoidea (i.e., Orussidae) to the

Late Cretaceous–Paleocene (69–64 Ma), Siricoidea (i.e., Siricidae) to

the Late Cretaceous–early Eocene (68–54 Ma), Xiphydrioidea

(i.e., Xiphydriidae) to the late Eocene (37–33 Ma) and of Cephoidea
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 13653113, 0, D
ow

nloaded from
 https://resjournals.onlinelibrary.w

iley.com
/doi/10.1111/syen.12645 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [18/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(i.e., Cephidae) to the Oligocene (31 Ma) (Nyman et al., 2019; Wutke

et al., 2024).

On the family level, within Tenthredinoidea, the split of Argidae

and Pergidae was estimated from the Early–Middle Jurassic (182–

168 Ma) (Malagón-Aldana et al., 2021) to the earliest Early Cretaceous

(143 Ma) (Wutke et al., 2024), with neither of the estimates contra-

dicting the available age estimates for the superfamily. The crown-

group Argidae, Pergidae and Tenthredinidae seem to have originated

in the Early Cretaceous (124–100 Ma), contemporary with the Angio-

sperm Radiation and the Cretaceous Terrestrial Revolution (Peris &

Condamine, 2024), Cimbicidae and possibly Diprionidae in the Late

Cretaceous (90–76 Ma and 71–61 Ma, respectively) and Blasticotomi-

dae in the latest Eocene (35–34 Ma) (Nyman et al., 2019; Wutke

et al., 2024). In addition, Niu et al. (2022) recovered the Early Creta-

ceous (143–133 Ma) origin of the crown-group Athaliidae, which is

considerably different from the mid-Eocene (41 Ma) estimate by

Wutke et al. (2024), and only partially explainable by taxon sampling

(see Wutke et al., 2024). Within Pamphilioidea, the age of crown-

group Pamphiliidae was estimated to the mid-Eocene (41 Ma) and of

Megalodontesidae to the early Miocene (18 Ma) (Wutke et al., 2024).

The oldest fossil associated with Tenthredinoidea is a blasticoto-

mid †Pseudoxyelocerus bascharagensis Nel et al. from the Early Jurassic

Bascharage locality (�182 Ma) (used to calibrate stem Tenthredinoi-

dea by Niu et al. (2022) and Wutke et al. (2024)), followed by several

stem-group Blasticotomidae fossils from the Late Jurassic Karatau-

Mikhailovka locality and Daohugou beds (�162 Ma). These and other

younger Mesozoic fossils of Blasticotomidae were recognized as

members of †Xyelotomidae, an extinct family that has been now syn-

onymized with Blasticotomidae (Rasnitsyn & Müller, 2023). However,

the sub-/family and even sometimes superfamily placement of these

fossils is questionable (Nel et al., 2004). Thus, †Palaeathalia laiyangen-

sis Zhang from the Early Cretaceous Tuanwang locality (�119 Ma)

might be the oldest fossil more confidently placed within the crown-

group Tenthredinoidea. The fossil was until recently considered the

oldest Tenthredinidae, creating a long gap to the second oldest fossils,

†Tenthredo primordialis Piton and †Paleonematus jarzembowskii Nel

et al. from the Paleocene Menat locality (�60 Ma). However, Niu

et al. (2022) suggested an alternative placement of †P. laiyangensis
within the earlier branching family Athaliidae. The oldest Cimbicidae

fossils, †Cenocimbex menatensis Nel and †Hervetia paleocenica Nel &

Kundura, belong to an extinct subfamily and are also from the Paleo-

cene Menat locality (�60 Ma). Fossil records of Argidae and Pergidae

are relatively rare with the first representatives appearing in the

Eocene (48–34 Ma), considerably later than the current estimates for

the families.

In addition, the oldest fossil associated with Pamphilioidea is the

poorly preserved †Sogutia liassica (†Xyelydidae) from the Early Juras-

sic Sogyuty locality (�196 Ma), followed by several better-preserved

xyelyids from the Early Jurassic Sai-Sagul locality (�178 Ma). The oldest

crown-group Pamphilioidea are probably several fossils from the Middle

to Late Jurassic Daohugou beds (�162 Ma) placed in extant families

Megalodontesidae and Pamphiliidae. Fossil Megalodontesidae are exclu-

sively known from the Mesozoic and are all stem-group fossils. One of

the oldest Pamphiliidae fossils, †Scabolyda orientalis from the Daohugou

beds (�162 Ma), has been recovered with very limited support within

crown-group Pamphiliidae, but more confident placements of this and

many other Pamphiliidae fossils await a more comprehensive phyloge-

netic analysis (Wang et al., 2016). The oldest fossils associated with

Orussoidea are several †Paraorussidae fossils from the Middle Karatau-

Mikhailovka locality (�162 Ma). The oldest Orussidae are †Mesorussus

taimyrensis Rasnitsyn from the Late Cretaceous Taiymir amber (�97 Ma)

and †Minyorussus luzzii Basibuyuk et al. from New Jersey amber

(�92 Ma). These two species are probably stem Orussidae (Vilhelmsen,

2003; 2007), while the oldest crown-group Orussidae seems to be †Bal-
torussus velteni Schedl (Vilhelmsen & Zimmermann, 2014) and the

recently described first female orussid fossils from Baltic amber, †Krypto-
velona carstengroehni Vilhelmsen et al. and †Orussus juttagroehnae Vil-

helmsen et al., from the Eocene (48–34 Ma) (Vilhelmsen et al., 2024).

The oldest fossil placed in Siricoidea and Siricidae is †Liasirex sogdianus

Rasnitsyn from the Sai-Sagul locality (�178 Ma), followed by several Siri-

cidae and one †Protosiricidae fossils from Karatau-Mikhailovka locality

(�162 Ma). However, some of these Cretaceous fossils originally associ-

ated with the crown-group Siricidae are deemed stem-group representa-

tives, which makes two †Urocerus ligniticus (Piton) fossils from Paleocene

of Menat (�60 Ma), the oldest clear crown-group Siricoidea (Jouault

et al., 2020; Wedmann et al., 2014).

Overall, the crown-group age estimates are generally supported

by the fossil record or at least do not contradict it. However, some-

times these age estimates are very close to the oldest crown-group

fossils, as seen in the cases of Pamphilioidea and Siricoidea. At other

times, they are considerably older than the most credible crown-group

fossils, suggesting relatively long ghost lineages. For example, there is

a 115–17 Ma gap between the first occurrence of †Palaeathalia
laiyangensis and the age estimate for Tenthredinoidea. Similarly, there

is a gap of around 40 Ma years between †Tenthredo primordialis Piton

and the age estimate for Tenthredinidae, and more than 60 Ma

between the first fossils of Argidae, Pergidae and the estimated

crown-group ages for the families. To close these gaps, continued

studies of the Symphyta fossil record are needed, together with revi-

sions of the existing fossil record, as the placement of several early

fossils, some used as calibration points in node dating studies, has

been questionable. Some of the node dating studies made use of the

total-evidence dating study of Ronquist et al. (2012) to help derive

the calibration points, indicating a need for a comprehensive total-

evidence dating study on Symphyta.

Proctotrupomorpha

Rasnitsyn (1988) erected the Infraorder Proctotrupomorpha, compris-

ing the superfamilies Cynipoidea, Platygastroidea, Chalcidoidea,

Mymarommatoidea and Proctotrupoidea (including Diaprioidea).

Sharkey (2007) later recognized Diaprioidea as a distinct superfamily,

a finding in line with recent phylogenomic works. Proctotrupomorpha

has been consistently recovered as monophyletic in other phylo-

genetic analyses using both morphology and multilocus data

EVOLVING PERSPECTIVES IN Hymenoptera SYSTEMATICS 9
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(Dowton et al., 1997; Heraty et al., 2011; Klopfstein et al., 2013;

Sharkey et al., 2012), and is also corroborated using phylogenomic

data (Branstetter, Danforth, et al., 2017; Peters et al., 2017; Blaimer

et al., 2023). However, the phylogeny within Proctotrupomorpha

varied between the UCE-based studies (Blaimer et al., 2023;

Branstetter, Danforth, et al., 2017) and the transcriptomic analyses of

Peters et al. (2017) (Figure 1, inset 2A/2B).

Blaimer et al. (2023) recovered a Late Triassic origin for Procto-

trupomorpha (210 Ma), which is strikingly close to the age estimate of

the preferred dating analysis of Peters et al. (2017) of 211 Ma

(Figure 2). These estimates do not contradict the oldest known

Proctotrupomorpha fossils from the Middle–Late Jurassic localities in

China and Kazakhstan (�162 Ma) placed in the extinct (†Peleserphidae
and †Mesoserphidae) and extant (Heloridae, Pelecinidae and

Roproniidae) Proctotrupoidea families.

Proctotrupomorpha—Superfamily Cynipoidea

Within Proctotrupomorpha, gall wasps (Cynipidae) in the superfamily

Cynipoidea were shown to be polyphyletic using transcriptome data

(Peters et al., 2017), UCEs (Blaimer et al., 2020) and Benchmarking

Universal Single-Copy Orthologs (BUSCOs) (Hearn et al., 2024), as

multiple cynipid tribes were recovered outside of Cynipidae. This has

major implications for the evolution of gall induction within Cynipoi-

dea, where the long-held view of gall induction having evolved only

once within a monophyletic Cynipidae from an entomophagous

ancestor has now been refuted (Ronquist et al., 2015). According to

our current understanding, the life history trait of gall induction has

likely evolved at least six times independently, while inquilinism (living

commensally within the gall) has evolved at least three times (Blaimer

et al., 2020; Hearn et al., 2024). The wood-boring beetle parasitoids

within the families Ibaliidae and Liopteridae, which were previously

considered to be the earliest divergent lineage within Cynipoidea

(Ronquist et al., 2015), are now considered close relatives of Figitidae

sensu lato (Blaimer et al., 2020). The newly established family Paraula-

cidae (formerly tribe Paraulacini) has been shown to be the sister

group to the remaining Cynipoidea, all of which are parasitoids of gall-

inducing Chalcidoidea (Hearn et al., 2024; Rasplus et al., 2022).

Besides research on the higher level relationships of Cynipoidea, tai-

lored studies on specific tribes and genera have also been conducted

with phylogenomic data (e.g., Ward et al., 2022, 2024; Zhang,

Buffington, et al., 2020). The recent phylogenomic studies on the for-

mer subfamilies of Figitidae, such as Parnipinae and Euceroptrinae,

suggest that they will likely have to be elevated to family level in the

future (Blaimer et al., 2020, 2023). The Australian endemic Austrocy-

nipidae, perhaps the rarest of all Hymenoptera families, has never

been collected again since its initial discovery and has not been

included in any phylogenomic analyses as of now.

Divergence time estimates for the crown-group Cynipoidea vary

drastically between different studies, out of which only one (Blaimer

et al., 2020) focused on Cynipoidea as a whole. The inferred ages span

from the Early Jurassic (191 Ma) (Blaimer et al., 2020), to the Early

Cretaceous (130 Ma) (Blaimer et al., 2023) and Late Cretaceous

(94 Ma) (Peters et al., 2017). Within Cynipoidea, the age of crown-

group Ibaliidae and Figitidae was estimated to the Early Cretaceous

(113 and 123 Ma, respectively) (Blaimer et al., 2020; Buffington

et al., 2012), of Cynipidae sensu stricto to the border between the

Early and Late Cretaceous (103 Ma) (Blaimer et al., 2020), and of Liop-

teridae to the Late Cretaceous (77 Ma) (Blaimer et al., 2020).

The fossil record of Cynipoidea is relatively poor. The oldest fos-

sils placed in Cynipoidea are from the Early Cretaceous, †Dahurocynips
dahurica Rasnitsyn from the Turga Formation (�124 Ma) and

†Archaeocynipidae from the Khasurty and Baissa localities and Gidar-

inskaya Formation (�119 Ma), although the placement of †Archaeo-
cynipidae within Cynipoidea is questionable (Ronquist, 1999). Several

fossils from the Late Cretaceous New Jersey (�92 Ma), Taimyr (105–

83.5 Ma) and Canadian (�77 Ma) amber have been associated with

crown-group Cynipoidea (Liu et al., 2007). The oldest known Figitidae

are †Protocharips evenhuisi Kolarev, placed in the extant subfamily

Charipinae from the Late Cretaceous Taimyr amber (�99 Ma), and

two fossils from the New Jersey amber (�92 Ma) (Pujade-Villar &

Peñalver, 2019; Table S3c). Only three fossil representatives of Liop-

teridae are known, all probably stem-group Liopteridae, with the two

oldest ones from the Late Cretaceous Canadian amber (�77 Ma). The

oldest known Cynipidae is †Tanaoknemus ecarinatus Liu et al., also

from the Late Cretaceous Canadian amber (�77 Ma), but its position

is uncertain. Thus, †Kinseycynips succinea (Kinsey) from Baltic amber

(48–34 Ma) is considered the oldest crow-group Cynipidae (Liu

et al., 2007). There are only three known fossils of Ibaliidae, with two

of the oldest specimens found in late Eocene Baltic amber (48–

34 Ma), including one classified within the extant genus Ibalia (Liu

et al., 2007).

The fossil record implies the existence of crown-group Cynipoi-

dea in the early Late Cretaceous, suggesting that they must have origi-

nated at the latest during the Early Cretaceous and giving support to

the age estimate from Blaimer et al. (2023). While the Early Jurassic

estimate of Blaimer et al. (2020) might seem too old, we cannot

exclude the Jurassic origin of the crown-group considering how poor

the fossil record of Cynipoidea is. The lack of fossils might also justify

the more than 70 Ma gap between the oldest known crown-group

Ibaliidae and Cynipidae and the age estimates for the families. Thus,

moving forward, both better definition of Cynipoidea families and

revision and improvement of the fossil record are needed to recon-

struct the complex evolution of gall induction.

Proctotrupomorpha—Superfamily Platygastroidea

The superfamily Platygastroidea was traditionally recognized compris-

ing two families, Platygastridae and Scelionidae (Austin et al., 2005).

Phylogenetic studies by Murphy et al. (2007) and Heraty et al. (2011)

have independently found that Scelionidae was paraphyletic. The fam-

ily was merged with Platygastridae by Sharkey (2007) without addi-

tional analysis. The superfamily was recently extensively revised using

multilocus data in combination with morphological and transcriptomic

10 ZHANG ET AL.
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data, now formally recognizing seven extant families (Chen

et al., 2021). This treatment also restores Scelionidae as a monophy-

letic family after Neuroscelionidae and Sparasionidae have been split

off, rather than as a subfamily of Platygastridae sensu Sharkey (2007).

Three additional small families including Nixoniidae (16 species),

Geoscelionidae (three extant species) and the monotypic Janzenelli-

dae were formally erected as new families. The plesiomorphic hosts of

the superfamily are likely Orthoptera eggs, while the group may have

subsequently shifted onto eight other insect orders, including major

radiations of lineages attacking Lepidoptera, Araneae and Diptera

(Chen et al., 2021).

The age of the superfamily is estimated to the Early Cretaceous

(146–126 Ma) (Blaimer et al., 2023; Peters et al., 2017; Tang

et al., 2019) (Table S2), while the age estimates for constituent fami-

lies and a comprehensive dated phylogeny of the platygastroids are

still missing. Talamas et al. (2017) report the oldest clear platygas-

troids from the Early Cretaceous Lebanese amber (�128 Ma), while

the oldest described fossil is a †Proterosceliopsidae, †Proterosceliopsis
masneri Ortega-Blanco et al. from the Early Cretaceous Álava amber

(�102 Ma). These are followed by several fossils in the Late Creta-

ceous Burmese amber and Bezonnais amber (�97 Ma) placed in †Car-
adiophyodidae, and extant families Geoscelionidae, Platygastridae and

Sparasionidae (Talamas et al., 2017, 2019; Table S3c). However, the

placement of many platygastroid fossils is questionable given that

the relationships within the superfamily and monophyly of some fami-

lies are still being scrutinized. Nevertheless, there have recently been

some positive examples of using novel microscopy techniques and

microcomputed tomography (micro-CT) scanning for examining mor-

phology to classify both extant and fossil families of platygastroids

(Bremer et al., 2021; Mikó et al., 2021). For example, Mikó et al.

(2021) recently reported new family-level morphological characters

for Platygastridae, which support sister relationships of the recently

erected family Janzenellidae and Platygastridae, and provide addi-

tional evidence for the classification of fossils.

Proctotrupomorpha—Superfamilies Chalcidoidea and
Mymarommatoidea

Perhaps the greatest number of recent higher level taxonomic

changes within Hymenoptera pertains to the megadiverse superfamily

Chalcidoidea. Extensive taxonomic reorganization occurred as a result

of the combined effort of AHE and UCE studies (Cruaud et al., 2024;

Zhang, Heraty, et al., 2022). The Zhang, Heraty, et al.’s (2022) study

revised the planidial clade, erecting Eutrichosomatidae and Chryso-

lampidae as new families. Burks et al. (2022) split the polyphyletic

family Pteromalidae into 24 families, and Eupelmidae into three fami-

lies to reflect the results of the Cruaud et al. (2024) phylogeny, bring-

ing the total number of extant chalcidoid families to 50 (Burks

et al., 2022; Zhang, Heraty, et al., 2022). While the higher classifica-

tion of Chalcidoidea is likely far from stable, phylogenomic studies on

various families with improved sampling will undoubtedly improve our

understanding (Baker et al., 2020; Cruaud et al., 2021; Maletti

et al., 2021; Peters et al., 2018; Rasplus et al., 2020; van Noort et al.,

2024; Zhang, Heraty, et al., 2022; Zhang, Sheikh, et al., 2022). The

earliest lineages within this megadiverse superfamily, along with its

sister group Mymarommatoidea, are egg parasitoids (Cruaud et al.,

2024; Peters et al., 2018). Subsequently, the shift from smaller soft-

bodied wasps to larger and more heavily sclerotized wasps coincides

with radiations of host insect diversification, and they are currently

found in virtually all orders and life stages of Holometabola (Cruaud

et al., 2024). Phytophagy has also evolved many times across Chalci-

doidea, with the first shifts coinciding with the early diversification of

terrestrial angiosperms �100 Ma (Cruaud et al., 2024).

Comprehensively sampled divergence dating analyses suggest a

Middle Jurassic (169–162 Ma) (Blaimer et al., 2023; Cruaud et al.,

2024) to the Early Cretaceous (143–127 Ma) (Peters et al., 2017,

2018; Tang et al., 2019; Zhu et al., 2023) origin of crown-group

Chalcidoidea, with a rapid diversification during the Early to Late

Cretaceous in southern Gondwana, including subsequent dispersals to

the northern Hemisphere. Zhang, Heraty, et al. (2022) dated the origin

of a planidial larva clade to the Early Cretaceous (111 Ma) and the

evolution of ant parasitism within the clade to the Paleocene (64 Ma).

The most comprehensive age estimates for different chalcidoid fami-

lies can be found in Cruaud et al. (2024). Blaimer et al. (2023) included

a single representative of the superfamily Mymarommatoidea and

estimated its divergence from Chalcidoidea to the Early Jurassic

(180 Ma). A comparable age for this divergence (174 Ma) was recov-

ered by Cruaud et al. (2024) (Table S2).

The Chalcidoidea are present in the fossil record since the Early

Cretaceous, with the oldest being several fossils from Lebanese amber

(�128 Ma) belonging to the genera †Cretaxenomerus and †Protoita
(†Protoitidae). Ulmer et al. (2023) suggested a stem position for †Pro-
toitidae. The second oldest fossil is a †Baeomorpha (Baeomorphidae)

from the Early–Late Cretaceous El Soplao amber (�110 Ma), followed

by †Baeomorpha liorum Huber et al. and †Myanmymar aresconoides

Poinar & Huber (Mymaridae) from the Late Cretaceous Burmese

amber (�97 Ma) and several †Baeomorpha fossils from Taimyr amber

(�99–85 Ma). No other extant chalcid family is known from the Cre-

taceous (excluding some doubtful placements or undescribed speci-

mens of eupelmids and pteromalids from Jordanian amber).

Furthermore, only a few extant families are documented from the

early Eocene (Encyrtidae, Eulophidae, Eurytomidae, Pirenidae), while

several others appear for the first time during the late Eocene in Baltic

amber (48–34 Ma). The oldest fossil associated with Mymarommatoi-

dea is †Cretaceomma libanensis Rasnitsyn et al. from the Early Creta-

ceous Lebanese amber (�128 Ma), followed by †Archaeromma

hispanicum Ortega-Blanco et al. from El Soplao amber (�110 Ma)

(Table S3c).

The current Middle Jurassic age estimate (Cruaud et al., 2024) for

the crown-group Chalcidoidea creates a 30 Ma gap to the oldest clear

crown-group representative of Baeomorphidae. In addition, the Early

Cretaceous diversification is poorly supported by the fossil record, as

it assumes that the crown-group representatives of most of the fami-

lies should be present at least during the Late Cretaceous. Neverthe-

less, the estimated timing of diversification of chalcid lineages
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corresponds to major events in the evolution of angiosperms as well

as host insects (Cruaud et al., 2024), while the fossil record of chalcids

is severely understudied. Moreover, most of the chalcids are, due to

their small size, known only from amber deposits, which propagates

the temporal and spatial gaps in the already patchy fossil record of

Hymenoptera. The gaps between the age estimates and fossil record

will hopefully narrow down in the future with the upcoming revision

of the chalcid fossil record (J.-Y. Rasplus, pers. comm.), increased

interest in the fossil record of this group and the application of the

novel imaging techniques and micro-CT scanning necessary to study

these Microhymenoptera.

Proctotrupomorpha—Superfamilies Diaprioidea and
Proctotrupoidea

The superfamilies Diaprioidea and Proctotrupoidea within Proctotru-

pomorpha have yet to receive comprehensive phylogenomic treat-

ment. While both groups were included in the study by Blaimer et al.

(2023) and Diaprioidea was included in Cruaud et al. (2024), the taxo-

nomic sampling was comparatively limited. Within Diaprioidea, Dia-

priidae was recovered as polyphyletic, with Belytinae and

Ambositrinae forming a monophyletic group, while Ismaridae is

embedded within Diapriidae (Blaimer et al., 2023; Cruaud

et al., 2024). As for Proctotrupoidea, Roproniidae was not recovered

within the superfamily in the two UCE studies using two separate

samples of Ropronia garmani Ashmead, but as the sister group to Chal-

cidoidea + Diaprioidea, and this clade, in turn, formed the sister group

to Proctotrupoidea (Blaimer et al., 2023; Branstetter, Danforth,

et al., 2017) (Figure 1, inset 2A/2B). This result was not supported by

some morphological and all multilocus studies that have included this

taxon (Heraty et al., 2011; Klopfstein et al., 2013; Sharkey

et al., 2012). Three rare families of Proctotrupoidea, the two

Australian endemic families Austroniidae and Peradeniidae, along with

the eastern Palearctic endemic family Proctorenyxidae have not been

included in any phylogenomic analyses to date.

The divergence date estimates suggest a Jurassic origin of crown-

group Proctotrupoidea (175–161 Ma) (Blaimer et al., 2023; Peters

et al., 2017; Tang et al., 2019) and a Late Jurassic–Early Cretaceous

origin of Diaprioidea (�145 Ma) (Blaimer et al., 2023; Tang

et al., 2019). In addition, Blaimer et al. (2023) estimated the age of

Diapriidae sensu lato to the Early Cretaceous (114 Ma) and Proctotru-

pidae to the Late Paleocene (57 Ma) (Table S2).

There are more than 50 fossils from various Late Jurassic

localities (�160 Ma) associated with Proctotrupoidea, belonging to

different fossil and extant (Heloridae, Pelecinidae and Roproniidae)

families. Members of Proctotrupidae are present in the fossil record

since the earliest Early Cretaceous (�143 Ma), while the oldest fossil

placed in crown-group Proctotrupidae is †Cresogmus grimaldii Rasnit-

syn et al. from Burmese amber (�97 Ma), the only known Proctotrupi-

dae from the Late Cretaceous. The later occurrences include several

fossils identified as Proctotrupidae from the early Eocene. The oldest

fossil placed in Diaprioidea is †Mymaropsis baabdaensis Krogman et al.

from Early Cretaceous Lebanese amber (�128 Ma), placed in

†Spathiopterygidae, followed by †Cretapria tsukadai Fujiyama from

Early Cretaceous Choshi amber (�117 Ma), currently placed in Ismari-

dae but potentially also belonging to †Spathiopterygidae (Rasnitsyn &

Öhm-Kühnle, 2020; Table S3c). Thus, the oldest described crown-

group Diaprioidea might be a betyline †Protobelyta monsirei Jouault

et al. from Early Cretaceous Hkamti amber (�111 Ma) and the oldest

crown-group Diapriidae †Gaugainia electrogallica Perrichot & Nel from

Charentese amber (�102 Ma).

The younger age estimates for crown-group Proctotrupoidea

seem too close to the oldest crown-group fossils, especially the esti-

mate from Peters et al. (2017), who included only two proctotrupoids,

and Tang et al. (2019), who although had denser sampling of the

superfamily, applied relatively narrow uniform calibration points with

soft maximum. In addition, the age estimates for crown-group Procto-

trupidae are clearly too young given the fossil record. The current

Jurassic age estimates for the crown-group Diaprioidea are in line

with the fossil record, while the estimates for the crown-group Dia-

priidae sensu lato are also relatively close to the oldest crown-group

representatives.

Evaniomorpha sensu lato

The monophyly of the smaller parasitoid superfamilies formerly

known as Evaniomorpha (Evanioidea, Trigonaloidea, Ceraphronoidea,

Stephanoidea and Megalyroidea) sensu Rasnitsyn (1988) has always

been controversial, and these groups have received comparatively lit-

tle taxonomic attention to this date. Using multilocus data, they have

been recovered either as a monophyletic group (Dowton et al., 1997;

Klopfstein et al., 2013) or a paraphyletic grade in relation to Aculeata

(Heraty et al., 2011; Sharkey et al., 2012). While the traditional Eva-

niomorpha sensu Rasnitsyn (1988) remains poorly represented in large

phylogenomic studies, the monophyly of this group is not supported

in all recent studies and their relationships remain controversial, espe-

cially with respect to the phylogenetic position of Ceraphronoidea

(Figure 1, inset 4A/4B). However, it is worth noting that all studies

that have included either Trigonaloidea and/or Megalyroidea, have

recovered the two as sister to the Aculeata (Blaimer et al., 2023; Bran-

stetter, Danforth, et al., 2017; Heraty et al., 2011; Klopfstein

et al., 2013; Peters et al., 2017). The divergence date estimate for Eva-

niomorpha + Aculeata is Late Triassic (225–206.2 Ma) (Blaimer et al.,

2023; Peters et al., 2017).

Evaniomorpha—Superfamilies Trigonaloidea and
Megalyroidea

Trigonaloidea (consisting of a single family Trigonalidae) has been

either recovered as the sister group to Aculeata in Peters et al. (2017)

and Branstetter, Danforth, et al. (2017), or as sister to Megalyroidea

(consisting of a single family Megalyridae), which then together

formed the sister group to Aculeata (Blaimer et al., 2023;

12 ZHANG ET AL.
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Heraty et al., 2011; Klopfstein et al., 2013). Most of the dating studies

focusing on Hymenoptera included only a single to a couple of repre-

sentatives of the two superfamilies, thus only ages of stem-groups are

provided. Tang et al. (2019) estimated the age of the crown-group

Megalyroidea to the Middle Jurassic (160 Ma) and of Trigonaloidea in

the Early Cretaceous (125 Ma).

As the position of †Maimetschidae within Trigonaloidea is

unclear, only fossils placed in Trigonalidae are considered. Nel et al.

(2003) reviewed the Trigonalidae fossil record and concluded that

almost all fossils previously associated with Trigonalidae should be

considered incertae sedis and that the oldest certain fossil is †Albiogo-
nalys elongatus Nel et al., although Boudinot et al. (2022) tentatively

retained the fossil as incertae sedis in Trigonaloidea. The oldest Mega-

lyroidea fossils are from the Late Jurassic Karatau-Mikhailovka and

Yujiagou localities (�162 Ma) (Table S3c). Some of the fossils from

the early Late Cretaceous amber deposits, e.g., species of †Kamyristi

and †Cretodinapsis (�97 Ma), were recently recovered with limited

support within the crown-group Megalyridae (Brazidec et al., 2024),

suggesting that crown-group Megalyroidea may have originated

already during the Early Cretaceous. However, the better supported

crown-group representative of Megalyroidea is †Prodinapsis oesiensis

Perrichot from the early Eocene Oise amber (�52 Ma).

Evaniomorpha—Superfamilies Evanioidea and
Stephanoidea

Evanioidea and Stephanoidea have consistently been recovered as sis-

ter groups (Blaimer et al., 2023; Peters et al., 2017). Within Evanioi-

dea, Evaniidae and Gasteruptiidae have been investigated more

extensively using multilocus data by Sharanowski et al. (2019) and

Parslow et al. (2020), respectively.

Based on node dating studies, crown-group Evanioidea originated

sometime between the Early and Late Jurassic (178–151 Ma) (Blaimer

et al., 2023; Branstetter, Danforth, et al., 2017; Parslow et al., 2020;

Peters et al., 2017). A tip dating study (Jouault et al., 2022) similarly

recovers an Early Jurassic origin for the crown-group (176 Ma). The

age estimate for the crown-group Evaniidae ranges from the Early

Cretaceous (137 Ma) (Sharanowski et al., 2019) to Paleocene (58 Ma)

(Jouault et al., 2022), and for Gasteruptiidae vary from Paleocene

(60 Ma) (Parslow et al., 2020) to the latest Oligocene (23 Ma) (Jouault

et al., 2022). Peters et al. (2017) recovered a Late Triassic origin of the

crown-group Stephanoidea (214 Ma). In a recent tip dating study

based on morphological data, Ge et al. (2023) estimated a Late Juras-

sic (155 Ma) origin of crown-group Stephanidae.

There has been a recent phylogenetic revision of the fossil record

of the superfamily Evanioidea (Jouault et al., 2022), making differenti-

ation of crown- and stem-group fossils relatively straightforward. The

oldest stem-group fossils associated with the superfamily belong to

†Anomopterellidae and †Praeaulacidae from Middle–Late Jurassic

localities (�162 Ma). The oldest fossil recovered within crown-group

Evanioidea is †Cretevania concordia Rasnitsyn et al. from the Early

Cretaceous Old Pit, Clockhouse Brickworks (�133 Ma), which is also

one of the oldest stem Evaniidae. The earliest crown-group Evaniidae

fossils are known from the Eocene Baltic amber (48–34 Ma). There

are only three fossils associated with Gasteruptiidae, all likely stem-

group fossils, the oldest being †Kotujisca kholbotensis Rasnitsyn from

the Early Cretaceous Kholbotu-Gol locality (�129 Ma). The oldest

stem-group Aulacidae are described from the Late Cretaceous Bur-

mese amber (�97 Ma), while the oldest crown-group Aulacidae is

†Pristaulacus jarzembowskii Jouault & Nel from the Paleocene Menat

locality (�60 Ma). The oldest fossil currently belonging to Stephanoi-

dea is †Cretephialtites pedrerae Rasnitsyn & Ansorge from the La Ped-

rera de Rúbies Formation (�128 Ma), which was transferred to

†Ohlhoffiidae by Jouault et al. (2021). The oldest crown-group Ste-

phanoidea are probably several fossils from Burmese amber (�97 Ma)

recovered within crown-group Stephanidae in the Ge et al. (2023)

analysis (Table S3c).

According to Li et al. (2018), the Early Jurassic origin of stem Eva-

nioidea, together with the Middle to Late Jurassic diversification of its

lineages, appears to conform best to the fossil record, which is gener-

ally in agreement with the available age estimates. This agreement

between the age estimates and fossil record could be attributed to

the well-defined stem- and crown-group lineages of Evanioidea as a

result of the recent revision of the fossil record (Jouault et al., 2021).

Furthermore, the Late Jurassic estimate for the origin of crown-group

Stephanidae is �60 Ma older than the oldest likely crown-group rep-

resentatives, but this age is not unlikely given the overall fossil record

of the group (Li et al., 2017).

Evaniomorpha—Superfamily Ceraphronoidea

The positioning of Ceraphronoidea remains uncertain (Figure 1, inset

4A/B), as it has been recovered as the sister group to Ichneumonoidea

(Peters et al., 2017; Blaimer et al., 2023), sister to Evanioidea + Trigo-

naloidea/Aculeata (Branstetter, Danforth, et al., 2017), or sister to

Evanioidea + Stephanoidea (Blaimer et al., 2023). To date, no compre-

hensive phylogeny exists for either Megaspilidae or Ceraphronidae, as

this superfamily is one of the least studied lineages of Hymenoptera.

However, both families appear to be monophyletic in the limited num-

ber of published phylogenetic/-omic studies (Blaimer et al., 2023;

Dowton et al., 1997; Heraty et al., 2011; Klopfstein et al., 2013;

Peters et al., 2017).

There are no dating studies focusing on Ceraphronoidea available

to date. Peters et al. (2017) and Blaimer et al. (2023) recovered similar

age estimates for the superfamily in the Early Jurassic (136–121 Ma)

(Table S2). The oldest fossil associated with Ceraphronoidea (exclud-

ing the extinct families with uncertain placement in Ceraphronoidea;

Table S1b) is †Conostigmus dolicharthrus Alekseev & Rasnitsyn

(Megaspilidae) from Taimyr amber (�99 Ma), followed by †Prolagy-
nodes penniger Alekseev & Rasnitsyn from a younger locality of Taimyr

amber (�85 Ma) and †Conostigmus cavannus McKellar et al. from

Canadian amber (�77 Ma) (Table S3c). Thus, the Early Jurassic age

estimates for crown-group Ceraphronoidea seem reasonable given

the current state of knowledge of the fossil record.
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Superfamily Ichneumonoidea

The large superfamily Ichneumonoidea, which includes the two extant

families Ichneumonidae and Braconidae, has been recovered as the

sister group to the rest of Apocrita in studies using UCEs (Blaimer

et al., 2023; Branstetter, Danforth, et al., 2017), or as the sister group

to Ceraphronoidea using both transcriptome and UCE data (Blaimer

et al., 2023; Peters et al., 2017; Figure 1, inset 3). Chen and van Ach-

terberg (2019) recently summarized 30 years of research for the sys-

tematics and phylogenetics of braconid wasps. The subfamilies

Apozyginae, Trachypetinae and Masoninae had uncertain placements

within the superfamily (e.g., see Quicke et al. (2020)), but have since

been grouped within Braconidae in light of a recent UCE phylogeny

and re-interpreted morphological evidence (Jasso-Martínez

et al., 2022). Within subfamilies of Braconidae, only a select few sub-

families such as Rogadinae have received thorough examination using

phylogenomic data (Jasso-Martínez et al., 2021; Samacá-Sáenz

et al., 2021). Ichneumonidae, the species-richest family of Hymenop-

tera, has been recovered consistently as monophyletic using different

targeted capture methods. These studies have also established Xoridi-

nae as the sister group to the remaining ichneumonids, and identified

a rapid radiation in the early evolution of Ichneumonidae (Klopfstein

et al., 2019; Sharanowski et al., 2021). Relationships within two of

three major informal groupings, Ichneumoniformes and Pimpliformes,

have also been interrogated using phylogenomic data (Klopfstein

et al., 2019; Santos et al., 2019, 2021, 2022). Nevertheless, Ophioni-

formes and the backbone of the ichneumonid tree remain poorly

resolved, especially regarding the position of the enigmatic Labeni-

formes and various small subfamilies. Thus, the exact relationships

within the family are still in need of extensive study (Blaimer

et al., 2023; Sharanowski et al., 2021).

Both Peters et al. (2017) and Blaimer et al. (2023) report an Early

Jurassic origin for crown-group Ichneumonoidea (182 and 207 Ma,

respectively). The age estimates for the two constituent extant families

vary considerably between different studies, and comprehensive age

estimates are lacking. Whitfield (2002) provided the first age estimates

for Braconidae and microgastroids using a penalized likelihood approach,

followed by Murphy et al. (2008) who also applied penalized likelihood

but newly derived calibration points. In a node dating study, Peters et al.

(2017) recovered an Early Cretaceous origin of the crown-group Braconi-

dae (145 Ma) and Ichneumonidae (106 Ma). However, Blaimer et al.

(2023) recovered much older estimates for both families, with the

crown-group Braconidae originating in the Early Jurassic (185 Ma) and

Ichneumonidae at the Late Jurassic–Early Cretaceous boundary

(142 Ma). A recent total-evidence dating study focused on the ichneu-

monid grouping Pimpliformes, recovered an even older, Early Jurassic ori-

gin for the crown-group Ichneumonidae (181 Ma) (Spasojevic

et al., 2021), suggesting that most of the extant ichneumonid subfamilies

originated before the Cretaceous-Paleogene boundary.

A few select studies focus on lower taxonomic levels of Braconi-

dae, such as the node-dating studies on Rogadinae and Doryctinae

(Zaldivar-Riverón et al., 2008; Zaldívar-Riverón et al., 2008). Kittel

et al. (2016) used the braconid subfamily Cheloninae to demonstrate

an enormous impact of dating method choice, calibration points and

calibration priors on the age estimates, reporting median age esti-

mates from the Eocene (45 Ma, penalized likelihood) to the Late Trias-

sic (205 Ma, total-evidence tip dating) for the subfamily. Within

Ichneumonidae, Santos et al. (2022) recently conducted a total-

evidence dating study on Labeninae (Santos et al., 2022), addressing

the role of Gondwanan vicariance in the diversification of this

subfamily.

The oldest fossil placed in Ichneumonoidea is a braconid †Cretobraco-
nus maculatus Rasnitsyn & Sharkey from the Late Jurassic Khutuliyn-Khira

locality (�149 Ma) currently with uncertain but likely stem position within

braconids. The oldest braconid fossil associated with an extant subfamily

(Aphidiinae) is †Archephedrus stolamissus Ortega-Blanco et al. from the

Álava amber (�102 Ma). The oldest certain Ichneumonidae are members

of †Paleoichneumoninae, the oldest occurrence being †Palaeoichneumon

townesi Kopylov from the Early Cretaceous Kholbotu-Gol locality

(�129 Ma). Their position within Ichneumonidae (stem vs. crown), as well

as the position of two subsequent subfamilies in the fossil record,

†Novichneumoninae (�99 Ma) and †Labenopimplinae (�99–77 Ma), is

still debatable. †Labenopimplinae were, however, clearly recovered within

crown-group ichneumonids in the total-evidence dating study of Spasoje-

vic et al. (2021). The oldest fossils currently placed in an extant subfamily

are †Albertocryptus dossenus McKellar et al. (Labeninae) from the Late

Cretaceous Canadian amber (�77 Ma) and †Hallocinetus arvernus (Piton)
(Acaenitinae) from Paleocene of Menat (�60 Ma). However, their current

placement is highly uncertain (McKellar et al., 2013; Santos et al., 2022;

Spasojevic et al., 2022), making fossils from the Fur Formation (�51 Ma)

the earliest clear crown-group representatives of extant ichneumonid

subfamilies (Klopfstein, 2022; Viertler et al., 2022; Table S3c).

The fossil record suggests the presence of the crown-group Bra-

conidae and likely Ichneumonidae during the entire Late Cretaceous,

making the estimate of Peters et al. (2017) for the crown-group ich-

neumonids too young. With a comprehensive total-evidence-dated

UCE phylogeny of ichneumonids (B. Santos and A. Viertler pers.

comm.) and a node-dated UCE phylogeny of braconids (J. Jasso-Martí-

nez pers. comm.) on the way, we are soon to see more credible age

estimates for both families. The fossil record of braconids has received

particularly limited attention, and the careful assessment of the cali-

bration points will be crucial for improving the current age estimates.

Aculeata

Different age estimates suggest that crown-group Aculeata originated

between the Early Jurassic and the earliest Early Cretaceous (�195–

142 Ma) (Blaimer et al., 2023; Boudinot et al., 2022; Branstetter,

Danforth, et al., 2017; Tang et al., 2019). However, the two analyses

specifically focusing on Aculeata (Boudinot et al., 2022; Branstetter,

Danforth, et al., 2017) both inferred a Middle Jurassic origin for the

group (�175–161 Ma). Wilson et al. (2013) also provided age esti-

mates for the constituent superfamilies and families, associating their

diversification with the diversification of flowering plants during

Cretaceous.
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According to Boudinot et al. (2022), the oldest definitive crown-

group Aculeata are from Early Cretaceous Lebanese amber

(�128 Ma), belonging to the traditional Chrysidoidea and †Holopse-

nellidae, which they recovered close to Bethylidae and †Chrysobythi-
dae. These fossils suggest that the Early Cretaceous age estimates for

crown-group Aculeata are plausible, but possibly too young.

Aculeata—Superfamilies Chrysidoidea and Dryinoidea

Among the aculeates, the phylogeny of the superfamily Chrysidoidea

stands out as a continuing and unresolved challenge. Klopfstein et al.

(2013) included four families of Chrysidoidea (Bethylidae, Chrysididae,

Plumariidae and Scolebythidae) using seven genes, and recovered a

paraphyletic grade to the rest of the aculeates with Bethylidae as the

sister to Vespidae, rather than a monophyletic superfamily. Using

transcriptome data, Peters et al. (2017) recovered a monophyletic

superfamily Chrysidoidea, whereas other studies consistently found it

as paraphyletic with respect to the remaining Aculeata (as shown in

Figure 1). However, the sampling of the respective studies can explain

some of the inconsistencies: Peters et al. (2017) included representa-

tives from three out of the seven families (Chrysidoidea, Bethylidae,

Plumariidae), while Pauli et al. (2021) also included Dryinidae. UCE

studies (Blaimer et al., 2023; Branstetter, Danforth, et al., 2017) addi-

tionally included Sclerogibbidae, Embolemidae and finally all seven

extant families with the addition of Scolebythidae (Boudinot

et al., 2022). In the UCE studies, three families (Sclerogibbidae, Embo-

lemidae and Dryinidae) formed a separate clade, which was recovered

as the sister group to the remaining Aculeata. This clade, which is

referred to as ‘Chrysidoidea 2’ in Branstetter, Danforth, et al. (2017),

is not sampled in Peters et al. (2017), hence explaining the unlikely

monophyly of the superfamily. Some recent studies have classified

this group as the superfamily Dryinoidea to resolve the paraphyly of

Chrysidoidea in the old sense (Boudinot et al., 2022; Lepeco &

Melo, 2023). Since there is little compelling evidence that Chrysidoidea

in the old sense is a monophylum, we here also recognize Dryinoidea as

a separate superfamily (Figure 1). Despite the differences in taxon sam-

pling, additional incongruences center around the position of Bethylidae

with respect to Chrysididae and Scolebythidae. Multiple studies have

found Plumariidae as the sister group to Bethylidae (Branstetter,

Danforth, et al., 2017; Pauli et al., 2021; Peters et al., 2017), whereas

Blaimer et al. (2023) and Boudinot et al. (2022) found Plumariidae as sis-

ter to the remaining lineages of this clade. On the family level, only Chry-

sididae have been examined using multilocus and phylogenomic data,

and while the family is monophyletic, some of the lower level classifica-

tions remain artificial (Pauli et al., 2019, 2021).

In dating studies in which the superfamily has been recovered as

monophyletic, the age estimates range from the Early Jurassic to the

Early Cretaceous (176–135 Ma) (Peters et al., 2017; Wilson et al.,

2013). Several studies estimated the Early Cretaceous as the period of

initial chrysidoid diversification (Blaimer et al., 2023; Lucena &

Almeida, 2022; Peters et al., 2017). In addition, Blaimer et al. (2023)

reported an Early–Late Cretaceous (99 Ma) origin for crown-group

Chrysididae, while the tip dating study by Lucena and Almeida (2022)

reported a slightly older Early Cretaceous (�125 Ma) estimate for the

family (Table S2). The age of crown-group Bethylidae was estimated

to the Early–Late Cretaceous (102 Ma) (Blaimer et al., 2023).

The oldest fossils associated with Chrysidoidea are several fossils

belonging to Bethylidae and Scolebythidae from the Early Cretaceous

Lebanese amber (�128 Ma). The oldest fossil currently placed in

Chrysididae is †Dahurochrysis veta Rasnitsyn from the Turga locality

(�124 Ma), but Melo and Lucena (2019) suggest that it might be a

stem Chrysidoidea. This fossil is followed by several fossils in the Late

Cretaceous Burmese and Charentese amber (�97 Ma), some of which

are recovered within crown-group Chrysididae, but sometimes lack

some of the morphological synapomorphies of the related extant taxa

(Boudinot et al., 2022; Lucena & Melo, 2018). The oldest Dryinoidea

are three fossils from Lebanese and Wealden amber (�128 Ma), each

belonging to one of the three extant families (Table S3c).

If the chrysidids from the Burmese amber indeed belong to the

crown-group, the age estimates from Blaimer et al. (2023) are too

young and the crown-group must have originated at least during the

Early Cretaceous. However, little can be concluded at this point, given

the unstable relationships within Chrysidoidea and even within Chry-

sididae, as well as the uncertain placement of the Cretaceous fossils.

Aculeata—Superfamily Scolioidea

The paraphyly of the traditional Vespoidea resulted in the split into six

superfamilies, largely based on the multilocus phylogeny present by

Pilgrim et al. (2008). Scolioidea includes Scoliidae and Bradynobaeni-

dae (Pilgrim et al., 2008), with an extensive phylogenomic analysis of

Scoliidae available as a preprint (Khouri et al., 2022). The origin

of crown-group Scolioidea was estimated to the Early Cretaceous

(130–104 Ma) (Blaimer et al., 2023; Branstetter, Danforth,

et al., 2017; Wilson et al., 2013). The origin of crown-group Scoliidae

was estimated to the Early Cretaceous (120–118 Ma), with some

estimates being in conflict with the available age estimates for the

superfamily (Khouri et al., 2022; Wilson et al., 2013). The origin of

crown-group Bradynobaenidae was estimated to the Late Cretaceous

(85 Ma) (Wilson et al., 2013).

There are several fossils from the Early Cretaceous localities of

Spain and China (�128–119 Ma) that are currently considered putative

Scoliidae (Boudinot et al., 2022; Haichun et al., 2002; Tables S2 and S3c),

which suggest that most of the age estimates for the crown-group Sco-

lioidea and Scoliidae are too young. Moreover, only the confidence inter-

vals for the age estimates from Khouri et al. (2022) would encompass

the age of these fossils (Haichun et al., 2002; Tables S2 and S3c).

Aculeata—Superfamilies Pompiloidea, Tiphioidea,
Thynnoidea and Sierolomorphoidea

We follow the superfamily classification that was outlined by Pilgrim

et al. (2008) and expanded with the recognition of Sierolomorphoidea
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as a superfamily (Branstetter, Danforth, et al., 2017). According to this

classification, the superfamily Pompiloidea comprises the families

Pompilidae, Sapygidae, Mutillidae, as well as the newly elevated for-

mer mutillid subfamily Myrmosidae, as corroborated by genomic data

(Johnson et al., 2013; Waldren et al., 2023). This classification is in

slight contrast to the classification outlined in the preprint publication

of Boudinot et al. (2022), who argue for a Pompiloidea in a wider

sense, with the inclusion of several superfamilies elevated by Pilgrim

et al. (2008) as families and not as separate superfamilies. To this end,

they consider the superfamily Pompiloidea to include Sierolomorphi-

dae, Tiphiidae, Chyphotidae, Thynnidae, Pompilidae, Mutillidae and

Sapygidae, thus reducing the number of superfamilies for this clade

from four to one. Notably, the phylogenetic findings are not necessar-

ily in disagreement and both classifications yield natural groupings.

Until Boudinot et al. (2022) is formally published in peer-reviewed

form, we here follow Pilgrim et al. (2008) as displayed in Figure 1. On

the family-level, only Mutillidae have been investigated with deep tax-

onomic sampling and phylogenomic level data, and have been found

to be monophyletic (Waldren et al., 2023).

The origin of crown-group Pompiloidea was estimated to the

Early–Late Cretaceous (�100 Ma) by Wilson et al. (2013), Branstetter,

Danforth, et al. (2017) and Blaimer et al. (2023), while Peters et al.

(2017) and Waldren et al. (2023) recovered slightly older estimates,

from the Late Jurassic to the Early Cretaceous (154–143 Ma). On the

family level, based on a comprehensive molecular phylogeny of Pom-

pilidae and four calibration points, Waichert et al. (2015) inferred a

mid-Eocene (43 Ma) origin for the crown-group Pompilidae and a late

Eocene diversification for the most diverse subfamilies, followed by

an Oligocene diversification for the remaining subfamilies. More

recently, Waldren et al. (2023) dated the origin of Mutillidae and

Sapygidae to the Early Cretaceous (122 and 113 Ma, respectively),

the origin of Pompilidae to the Late Cretaceous (71 Ma), and that of

Myrmosidae to the Paleocene (65 Ma) (Table S2). Some studies using

node dating techniques focused on lower taxonomic levels of Pompili-

dae. To this end, Rodriguez et al. (2015) estimated the origin of the

pompilid tribe Aporini to the Miocene.

According to Waldren et al. (2023), the youngest Early Creta-

ceous age estimates for the crown-group Pompiloidea are not in align-

ment with what they deem the oldest pompiloid fossil, the

sapygid wasp †Cretofedtschenkia santanensis Osten (�117 Ma). Fur-

thermore, most of the age estimates for the families in Waldren et al.

(2023) are older than in the previous studies, but they are also in bet-

ter agreement with the oldest known fossil of Sapygidae and of Pom-

pilidae, †Cryptocheilus leleji Waichert, Rapoza & Rodriguez from the

Eocene Fur Formation (�52), as elaborated in Waldren et al. (2023).

Thynnoidea includes Chyphotidae and Thynnidae, while Tiphioi-

dea used to include Tiphiidae and Sierolomorphidae (Pilgrim

et al., 2008). However, Sierolomorphidae was not recovered as the

sister group to Tiphiidae using UCE data and thus was considered a

separate superfamily Sierolomorphoidea (Branstetter, Danforth,

et al., 2017). The current estimates suggest that the crown-group

Thynnoidea and Tiphioidea originated during the Early Cretaceous

(120–100 and 140–100 Ma, respectively) (Peters et al., 2017;

Wilson et al., 2013) or Late Cretaceous (�80 and � 70 Ma, respec-

tively) (Blaimer et al., 2023).

The oldest fossil associated with Thynnoidea is †Architiphia rasnit-

syni Darling & Sharkey from the Crato locality (�117 Ma), although

this placement is not recovered by Boudinot et al. (2022). The second

oldest fossil is †Myzine madeleinae Piton from Menat (�60 Ma), fol-

lowed by several fossils from the Florissant Formation (�36 Ma). The

oldest fossils associated with Tiphioidea are †Thanatotiphia nyx Engel

et al. and †Burmatiphia mandibulata Zheng et al. from Burmese amber

(�97 Ma). The latter was suggested to be a stem lineage of Tiphiidae,

while the placement of the former is unclear, but possibly nested

within the crown-group Tiphiidae, which would imply that some of

the available age estimates for the superfamily are too young. In con-

trast, the oldest clear fossils of Thynnoidea are significantly younger

than the current age estimate for the superfamily. The only fossil cur-

rently placed in Sierolomorphidae is †Loreisomorpha nascimbenei Ras-

nitsyn from New Jersey amber (�92 Ma) (Table S3c).

Aculeata—Superfamily Vespoidea

Vespoidea was refined to only include the two families Rhopalosoma-

tidae and Vespidae (e.g., Branstetter, Danforth, et al., 2017; Wilson

et al., 2013). Recent work with extensive sampling recovered the two

clades that include the eusocial lineages, Stenogastrinae and Polisti-

nae + Vespinae, as rather distantly related, thus once more strongly

suggesting two separate origins of eusociality within the family using

different targeted capture data (Bank et al., 2017; Piekarski

et al., 2018). This finding was originally revealed about 10 years prior

in a well-supported multi-locus phylogeny, albeit with much smaller

taxon sampling (Hines et al., 2007). Despite the new, recent work on

the phylogeny of Vespidae, the phylogenetic placement of the family

Vespoidea in relationship with other Aculeates is highly unstable:

Branstetter, Danforth, et al. (2017) recovered it as sister to the clade

containing Sierolomorphoidea, Pompiloidea, Tiphioidea and Thynnoi-

dea; Blaimer et al. (2023) recovered it as sister to the clade containing

Scolioidea, Formicoidea and Apoidea; and finally Peters et al. (2017)

recovered Vespoidea as sister to both of those clades (Figure 1,

inset 5A/5B).

Except for Huang et al. (2019), who recovered a Middle Jurassic

origin of the superfamily, the majority of node dating studies indicate

that crown-group Vespoidea originated and diversified during the

Early Cretaceous (144–109 Ma) (Blaimer et al., 2023; Peters et al.,

2017; Wilson et al., 2013). According to Wilson et al. (2013) both Ves-

pidae and Rhopalosomatidae originated in the Early Cretaceous

(�120 Ma) (Table S2). The oldest fossil associated with Vespoidea is

†Priorvespa longiceps Carpenter & Rasnitsyn from the Turga locality

(�124 Ma), followed by several other †Priorvespa and †Curiosivespa
species from the Bon Tsagaan and Baissa localities (�119 Ma). Perrard

et al. (2017) pointed out that the position of †Priovespa and †Curiosi-
vespa relative to crown-group Vespidae is unclear, while Boudinot

et al. (2022) recovered the two genera within crown-group Vespidae.

If the two fossils are indeed members of crown-group Vespidae, both

16 ZHANG ET AL.

 13653113, 0, D
ow

nloaded from
 https://resjournals.onlinelibrary.w

iley.com
/doi/10.1111/syen.12645 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [18/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Blaimer et al. (2023) and Wilson et al. (2013) estimates for the crown-

group Vespoidea (109 and 120 Ma, respectively) would be too young.

Aculeata—Superfamily Formicoidea

The monophyly of Formicoidea and its sole constituent family Formicidae

has never been seriously questioned and is fully supported by any

genome-scale phylogenetic study (e.g., Blaimer et al., 2023; Branstetter,

Danforth, et al., 2017; Peters et al., 2017). The sister group relationship of

Formicoidea to Apoidea, however, was established more recently and

together forms Formicapoidina. Formicapoidina is recognized by two syn-

apomorphies: (1) the presence of longitudinal mesopectal sulcus and (2) hav-

ing the fore wing crossvein 1cu-a anterior junction proximal to the

branching point of M + Cu (Boudinot et al., 2022). Both molecular multi-

locus studies (Debevec et al., 2012; Pilgrim et al., 2008; Wilson et al., 2013)

and morphological studies (e.g., Brothers, 1999) found various relationships,

including a sister group relationship to a clade comprising Apoidea + Sco-

lioidea, as sister group to Scolioidea, or as sister group to a clade comprising

Vespidae + Scoliidae. The sister group relationship of Formicoidea to Apoi-

dea was first convincingly demonstrated in the phylogenomic study of

Johnson et al. (2013) and was subsequently confirmed by all of the large-

scale UCE and transcriptome studies on Hymenoptera (Blaimer

et al., 2023; Branstetter, Danforth, et al., 2017; Peters et al., 2017). The

phylogeny of ants has been studied using various genetic data, ranging

from single genes, UCEs and mitogenomes, to BUSCOs (e.g., Allio et al.,

2020; Branstetter, Longino, et al., 2017; Romiguier et al., 2022). Many sub-

families and genera have received comprehensive treatments using UCE

sequence data (e.g., Blaimer et al., 2015, 2018; Borowiec, 2019; Borowiec,

Cover, & Rabeling, 2021; Camacho et al., 2022; Ješovnik et al., 2017;

Prebus, 2017; van Elst et al., 2021; Williams et al., 2020).

The age of crown-group Formicidae has been estimated from the

Early Cretaceous (130–118 Ma) (Boudinot et al., 2022; Branstetter,

Danforth, et al., 2017) to the Late Cretaceous (90 Ma) (Wilson

et al., 2013) (Table S2). The oldest fossils associated with Formicoidea

are several Formicidae fossils from the Early–Late Cretaceous Charen-

tese (�102 Ma) and Taimyr amber (�99 Ma), followed by more than

50 Formicidae fossils from the Burmese amber (�97 Ma). These fos-

sils are most likely stem Formicidae. Barden (2017) summarized and

reviewed the fossil record of ants, concluding that †Kyromyrma neffi

Grimaldi & Agosti from the Late Cretaceous New Jersey amber

(�92 Ma), might be one of the oldest fossils clearly belonging to the

crown-group Formicidae (Table S3c), which has been confirmed in

the analysis of Boudinot et al. (2022). Boudinot et al. (2022) also

recovered some undescribed species from Burmese amber (�97 Ma)

within the crown-group, further suggesting that the Early Cretaceous

origin for the crown-group might be more likely.

Aculeata—Superfamily Apoidea

Apoidea comprises the apoid wasps and the bees (Anthophila). The

paraphyletic nature of the apoid wasps, traditionally often divided into

Ampulicidae, Crabronidae, Heterogynaidae and Sphecidae, was long

suspected and proven multiple times using multi-locus and genomic

data. This situation was recently addressed by Sann et al. (2018,

2021) using a combination of transcriptome and target enrichment

data, by elevating a number of previously lower level groupings to

family status. According to Sann et al. (2018, 2021), the apoid wasps

now comprise 12 separate families: Ammoplanidae, Astatidae, Bembi-

cidae, Crabronidae, Entomosericidae, Eremiaspheciidae, Heterogynai-

dae, Mellinidae, Pemphredonidae, Philanthidae, Psenidae and

Sphecidae. These findings are at least partially supported by other

phylogenomic studies, albeit with less comprehensive taxonomic sam-

pling (Blaimer et al., 2023; Branstetter, Danforth, et al., 2017; Peters

et al., 2017), and especially the phylogenetic position of the newly

erected families Entomosericidae and Eremiaspheciidae remains to be

established (Sann et al., 2021). Further, discrepancies persist in the

phylogenetic placement of Heterogynaidae, which was recovered

controversially within Bembicidae in Sann et al. (2018). Upon reanaly-

sis, Sann et al. (2021) recovered Heterogynaidae as the sister group to

Mellinidae, which together form the sister group to the redefined

Sphecidae + Crabronidae, a topology consistent with other published

research (Blaimer et al., 2023; Branstetter, Danforth, et al., 2017).

The Anthophila (bees) is another group that has been extensively

studied using different phylogenomic data, ranging from transcrip-

tomes, UCEs, to low-coverage genomes (Almeida et al., 2023; Bossert

et al., 2019, 2022; Orr et al., 2022). The higher level relationships

among the bee families have been consistently found as displayed in

Figure 1 using phylogenomic data from different sources. Like for

ants, extensive phylogenomic work has been carried out to establish

the phylogeny of various lower level groupings including subfamilies

and genera (e.g., Bossert et al., 2020, 2021; Branstetter et al., 2021;

Freitas et al., 2021, 2023; Gueuning et al., 2020; Odanaka et al., 2022;

Sandoval-Arango et al., 2023; Zhang, Niu, et al., 2022).

The age of Apoidea has been inferred in most of the dating studies

that addressed Hymenoptera. Estimates for the crown-group Apoidea

vary significantly across different analyses, from the Early–Late Jurassic

(185–153 Ma) (Peters et al., 2017; Sann et al., 2018) to the Early–Late

Cretaceous (131–102 Ma) (Blaimer et al., 2023; Branstetter, Danforth,

et al., 2017; Wilson et al., 2013). According to the dating studies, most of

the Apoidea families seem to have originated during the Early Creta-

ceous (Bossert et al., 2022; Branstetter, Danforth, et al., 2017; Cardinal &

Danforth, 2013; Cardinal et al., 2018; Gonzalez et al., 2019; Peters et al.,

2017; Sann et al., 2018); however, age estimates sometimes vary signifi-

cantly between different analyses and studies. For example, the origin of

crown-group Andrenidae was estimated from the Late Cretaceous

(�90 Ma) (Bossert et al., 2022; Cardinal & Danforth, 2013) to the Late

Cretaceous to Paleocene boundary (�65 Ma) (Cardinal et al., 2018). The

origin of Anthophila has been estimated to the Early Cretaceous (�125–

115 Ma) (Almeida et al., 2023; Cardinal & Danforth, 2013; Sann

et al., 2018) (Table S2). A comprehensive summary of all major dating

analyses on bee divergence times is presented in Almeida et al. (2023).

Additionally, there are several dating studies on lower taxonomic

levels. Gibbs et al. (2012) estimated ages for crown-group lineages of

halictid bees and the origin of eusociality to the latest Eocene
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(�35 Ma). Hines (2008) provided an age estimate for the diversification

of extant bumble bee lineages to Eocene (40–25 Ma). Rehan et al.

(2013) estimated the diversification of Xylocopinae to the Early to Late

Cretaceous. Within the total-evidence tip dating framework, Gonzalez

et al. (2019) estimated the origin of the leaf-cutter bees to mid-

Oligocene to early Miocene (25–15 Ma) and Gonçalves et al. (2022) esti-

mated the origin of Augochlorini to the Paleocene (�62 Ma).

The Cretaceous estimates for the crown-group Apoidea are

clearly too young given the two oldest fossils associated with Apoidea

from the Early Cretaceous Lulworth Formation (�143 Ma), †Pompilop-

terus wimbledonix Rasnitsyn et al. and †Pompilopterus difficilis Rasnit-

syn et al. However, their placement within the superfamily was found

dubious in the phylogenetic analysis by Boudinot et al. (2022), and

they are instead recovered as the oldest Vespaculeata (Aculeata with-

out traditional Chrysidoidea). According to the same study, †Angaro-
sphex penyalveri, Rasnitsyn & Martínez-Delclòs from the Early

Cretaceous of Mongolia (�127 Ma) is the oldest definite Apoidea fos-

sil (Table S3c), making an Early Cretaceous origin of crown-group

Apoidea still feasible. The late Early Cretaceous age estimates for

crown-group Anthophila seem reasonable given the oldest undisputa-

ble bee fossil, †Cretotrigona prisca (Michener & Grimaldi), from the

Late Cretaceous New Jersey amber (�68 Ma).

A PERSPECTIVE ON FUTURE INROADS INTO
HYMENOPTERA TAXONOMY AND
SYSTEMATICS

Resolving the Hymenoptera bush of life

With the rapid advances in sequencing technology, there is a signifi-

cant increase in the scale of Hymenoptera phylogenomic studies, both

in terms of the number of markers and taxa. However, despite these

advances, there is a lack of consensus on the deep backbone phylog-

eny between phylogenomic studies. The first two large-scale Hyme-

noptera phylogenomic studies—(1) the Peters et al. (2017)

transcriptome study, which incorporated 3256 protein-coding genes

from 173 taxa; (2) and the Branstetter, Danforth, et al. (2017) UCE

study, which included 854 UCE loci from 187 taxa—both had some-

what limited taxon sampling, with a bias towards Aculeata and under-

sampling of parasitic wasps. The Blaimer et al. (2023) study is the

most comprehensively sampled to date, with 771 taxa and upwards of

447–1118 UCE loci from most known families. The higher level rela-

tionships within Blaimer et al. (2023) were also mostly corroborated

by earlier morphological and molecular data. Subsequent UCE studies

which have focused on densely sampling certain groups such as Chal-

cidoidea (Cruaud et al., 2024) and Symphyta (Wutke et al., 2024) have

largely agreed with the Blaimer et al. (2023) study, albeit, not surpris-

ingly, with much better resolution among the families. Therefore, the

Blaimer et al. (2023) phylogeny is the base of our preferred tree

(Figure 1), with some small refinement from other studies to improve

relationships among families (Cruaud et al., 2024; Sann et al., 2021;

Wutke et al., 2024).

With the development of sequencing technologies, high-quality

Hymenoptera genomes generated using second (short-read) or third-

generation (long-read) sequencing technologies are being published at

an exponential rate (Branstetter et al., 2018; Hotaling et al., 2021).

While the taxonomic focus is still skewed towards certain taxa like

bees and ants, efforts of sequencing the lesser known ‘dark taxa’ are
also on the way, with regional projects such as the Darwin Tree of Life

for the UK, and European Reference Genome Atlas for European

Union. The low input DNA from small specimens still provides a chal-

lenge to generating high-quality genomes, but a potential solution

could be using whole genome amplification to increase yield, as dem-

onstrated by Cruaud et al. (2018) on a single Trichogramma specimen.

Recently, a new species of gall wasp was even described along with

its genome (Brandão-Dias et al., 2022), providing a new gold standard

for taxonomic vouchers. More studies are also using BUSCO genes

(Simão et al., 2015), often in conjunction with UCEs or mitogenomes

from either published genomes or newly sequenced low-coverage

whole-genomes (Zhang, Niu, et al., 2022). So far, this method has

largely been used within sawflies (Herrig et al., 2024), gall wasps

(Hearn et al., 2024), bees (Orr et al., 2022; Zhang, Niu, et al., 2022)

and ants (Romiguier et al., 2022), where more published genomes are

available or there are ongoing initiatives to sequence whole genomes.

With the push and active development of standardized nuclear

markers across Metazoa (Dietz et al., 2022, 2024; Eberle et al., 2020),

we suspect that this strategy will become the dominant approach in

the upcoming years.

Simply increasing the number of molecular markers will not effec-

tively resolve every problematic node in the Tree of Life (reviewed in

Kapli et al., 2020; Steenwyk et al., 2023; Tihelka et al., 2021; Young &

Gillung, 2020). Confounding factors such as orthology prediction,

missing data along with compositional, rate and gene tree heterogene-

ity can lead to analytical errors, and therefore the detection of these

potential sources of error is needed for downstream analyses

(Du et al., 2023; Kapli et al., 2020; Steenwyk et al., 2023; Young &

Gillung, 2020). Thorough analyses using multiple matrices with various

levels of completeness, selecting more complex but computationally

expensive evolutionary models, more stringent filtering of loci or

groups, and use of coalescent approaches are just some of the current

best-practices. While this can be overwhelming to researchers not

familiar with the literature on the ever-increasing programmes and

best practices of phylogenomics, there are excellent tutorials and cus-

tom scripts available to automate the process of multiple sequence

alignment, trimming and loci filtering (e.g., Du et al., 2023; Steenwyk

et al., 2021). An exciting emerging phylogenomic method is utilizing

synteny (the conserved collinearity of orthologous loci from highly

contiguous genome assemblies), which can be further divided into

microsynteny (local gene orders) or macrosynteny (chromosomal orga-

nization), to resolve the deep and recalcitrant nodes across the animal

tree of life (reviewed in Steenwyk & King, 2024). These methods can

be used as an independent line of evidence to test the problems that

we have highlighted within the Hymenoptera phylogeny and can be

used to easily identify paralogs thus improving the accuracy of down-

stream analyses. However, it is still premature to know if these
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methods will resolve the rapid and dense radiation observed in mega-

diverse lineages of Hymenoptera such as Ichneumonoidea and

Chalcidoidea.

While our understanding of the higher level relationships of

Hymenoptera is being progressively refined, significant work remains

to capture the true species diversity of extant Hymenoptera. Several

hyperdiverse lineages of Hymenoptera remain understudied and can

safely be considered ‘dark taxa’ (Srivathsan et al., 2023). In addition

to the five recalcitrant nodes that we highlighted in the phylogenetic

overview of Figure 1, in-depth studies for many superfamilies

(e.g., Diaprioidea, Proctotrupoidea and Ceraphronoidea) are needed to

determine the validity of current family/generic level limits, ideally in

conjunction with morphological data for a comprehensive treatment

of extant and extinct taxa. Automation of time-consuming steps in the

discovery and description of new taxa, potentially based on the mito-

chondrial fragment COI/DNA barcoding, has significant potential to

dramatically expedite this process, and its implementation is an active

topic of research (e.g., Hartop et al., 2022; Srivathsan et al., 2021).

However, animal mitochondrial loci such as COI can also lead to an

overestimation of the number of species, as they have higher muta-

tion rates, lower effective population size and little to no recombina-

tion when compared with nuclear DNA, which can be further

exacerbated by reduced gene flow, introgression and endosymbiont

infection by Wolbachia (Eberle et al., 2020). As an alternative, Eberle

et al. (2020) suggested the use of BUSCO genes (Simão et al., 2015)

as an extension to DNA barcoding in future studies including Hyme-

noptera. To this end, they have identified 854 BUSCO candidates that

seem specific to the order. A potentially cost-effective solution could

be the simultaneous generation of multiple long-read loci (mitochon-

drial and nuclear) using third-generation sequencing techniques such

as ONT MinION. In any case, methods involving the ‘fishing’ of legacy
markers (genes used in traditional Sanger sequencing approaches)

from genomes or raw targeted capture sequences, or the ‘Franken-
stein tree’ method of building robust backbones using phylogenomic

level data and integrating it with taxon-dense sampling of legacy

markers, is becoming increasingly popular (e.g., Branstetter &

Longino, 2019; Santos & Brady, 2024). It is also noteworthy that the

majority of contemporary phylogenomic research is predominantly

centered in the Global North, which often holds extensive museum

samples owing to historical colonial influences. To rectify this geo-

graphical bias and ensure a more equitable representation, prioritizing

the taxonomic sampling of the remarkably diverse fauna of the South-

ern Hemisphere is critical. This undertaking, however, should be exe-

cuted collaboratively with local scientists to foster inclusivity and

uphold principles of equity in future scientific exploration.

Towards more consistent and reliable age estimates

Our review highlights the huge variation in divergence age

estimates for Hymenoptera and constituent lineages, as a result of

applied divergence dating methods and calibration points, as well as

taxon sampling and recovered tree topology. For example, the age

estimates for the nodes of interest (Figure 2) from the four higher

level phylogenomics studies on Hymenoptera, which applied node

dating (Blaimer et al., 2023; Branstetter, Danforth, et al., 2017; Peters

et al., 2017; Tang et al., 2019) either considerably overlap

(e.g., Apocrita and Tenthredinoidea) or barely overlap (e.g., Aculeata

and Vespina). This discrepancy might be explained by the largely dif-

ferent calibration points across these studies (Table S4). Furthermore,

both the choice of the root node prior, data set (amino-acid versus

nucleotide) or relaxed-clock model (independent versus correlated

rates) could have influenced the age estimates as demonstrated by

the sensitivity analyses performed in these four studies and supported

by findings of Warnock et al. (2012) and Kittel et al. (2016). The

numerous age estimates for the crown-group Hymenoptera further

emphasize the impact of the dating approach. On average, the esti-

mates coming from tip dating studies are older than the estimates

coming from node-dating studies. Among the tip dating studies, those

employing uniform tree prior or mis-specifying taxon sampling strat-

egy under the FBD prior produced older age estimates. These obser-

vations are not unique for Hymenoptera datasets and have been

reported for other organisms (e.g., Arcila et al., 2015; Herrera &

Dávalos, 2016; Simões et al., 2020).

While the node dating approach still dominates in empirical dating

studies, the prevalent opinion in the field of divergence dating is that

tip dating under fossilized birth-death models is a way forward in

obtaining more informed and comprehensive age estimates. However,

the performance of these models relies on several factors: (i) the sen-

sible sampling of fossils (Matschiner, 2019; O’Reilly &

Donoghue, 2020) and their correct placement in the phylogeny (but

see Mongiardino Koch et al., 2023), (ii) prior information on the extant

diversity of the group of interest (Gavryushkina et al., 2014; Zhang

et al., 2016, 2023) and (iii) more realistic modelling of the fossilization

process, uncertainty in the age of fossils (Barido-Sottani et al., 2019;

Püschel et al., 2020), taxon sampling (Luo et al., 2023), and in the case

of total-evidence datasets, morphological evolution (Lewis, 2001;

Simões et al., 2020; Tarasov, 2023; Wright et al., 2016). Hymenoptera

are both megadiverse and poorly known, both in terms of their extant

and fossil diversity. This poses significant challenges to various

aspects of divergence dating in the context of the FBD prior, espe-

cially regarding the fossil sampling and establishment of informative

priors on the model parameters.

Although there are currently around 6000 Hymenoptera fossils

belonging to almost all known superfamilies (PaleoBioDB, 2024), the

fossil record and the described fossil species diversity are unevenly

distributed across different groups, with about 1/3 of the described

fossils belonging to Formicoidea, while 45 extant Hymenoptera fami-

lies have none, and 27 extant Hymenoptera families (many belonging

to Chalcidoidea) have a single fossil representative (Table S3a). In

addition, around 50% of the described Hymenoptera fossils has been

described in the 19th and 20th centuries and urgently require modern

reinterpretation and taxonomic revision given the wealth of taxo-

nomic change in the classification of many groups that followed the

initial fossil descriptions (e.g., Ichneumonoidea and Chalcidoidea). This

is of particular relevance for providing credible calibration points.
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While the unresolved FBD tip dating approach can accommodate

some of the uncertainty in the fossil placement, the more objective

placement of fossils in a phylogeny can only be done using a total-

evidence dating approach, which requires careful examination and

interpretation of morphological evidence and time-consuming estab-

lishment of morphological matrices.

On the bright side, the development of the dating approaches has

sparked great interest for studying the fossil record of Hymenoptera

among neontologists, who in contrast to paleontologists, aim at

understanding the evolution and ecology of extant taxa. The increase

in collaborations between neontologists and paleontologists is speed-

ing up the rates of fossil discovery and descriptions and providing

more integrative approaches for fossil descriptions, thus reconciling

evidence for reconstructing the evolutionary history of Hymenoptera.

In 1975 and 2014, record numbers of 147 and 148 fossil species,

respectively, have been described, and since 2018, more than 10 new

extinct families of Hymenoptera have been established, mostly from

the enigmatic �100 million years old Burmese amber deposits

(Tables S1b and S3; e.g., Jouault et al., 2021; Li et al., 2020; Melo &

Lucena, 2019; Rasnitsyn et al., 2019; Rosa & Melo, 2023; Burmese

Hymenoptera fauna is reviewed in Zhang et al., 2018). Moreover,

there have been several recently published major revisions of the fos-

sil record of specific hymenopteran groups, such as Ampulicidae

(Ohl, 2004), Bethylinae (Ramos et al., 2014), Chrysidoidea (Olmi

et al., 2010), Cynipoidea (Pujade-Villar & Peñalver, 2019), Cretaceous

non-aculeate Hymenoptera (Rasnitsyn & Öhm-Kühnle, 2021), Formi-

cidae (Barden, 2017), Ichneumonidae (Spasojevic et al., 2018, 2022;

Dehon et al., 2019; Viertler et al., 2022), Pompilidae (Rodriguez

et al., 2017), Cretaceous Proctotrupomorpha (Rasnitsyn & Öhm-

Kühnle, 2019) and Stephanidae (Ge et al., 2023). Several studies have

also demonstrated the power of integrative approaches that combine

classic study of fossil morphology with a total-evidence analysis

(Klopfstein & Spasojevic, 2019; Meier et al., 2022) or morphometric

analysis of wings (De Meulemeester et al., 2012; Li et al., 2019; Shih

et al., 2020; Viertler et al., 2022) to help infer the placement of Hyme-

noptera fossils relative to presently known taxa.

Furthermore, both the interpretation of fossils and the creation of

morphological matrices have been facilitated by technological

advances to study morphology (reviewed in Wipfler et al., 2016). In

particular, micro-CT has increasingly been used for non-destructive

anatomical examination, species descriptions and taxonomic place-

ment of both extant (e.g., Hita Garcia et al., 2017; Pasandideh

Saqalaksari et al., 2020; Sarnat et al., 2019; van de Kamp et al., 2022)

and extinct Hymenoptera (e.g., Boudinot et al., 2022; Bremer et al.,

2021; van de Kamp et al., 2018; Viertler et al., 2023). Very few com-

prehensive morphological examinations across Hymenoptera have

been published in recent years (but see Ronquist et al., 1999;

Schulmeister, 2003; Vilhelmsen, 2001; Vilhelmsen et al., 2010), and

this could partly be attributed to the lack of unified morphological ter-

minology across the order or even within families, which can nega-

tively impact studies on descriptive taxonomy, comparative

phylogenetics, gene expression patterns, phenotype variability and

machine learning algorithms (Dal Pos et al., 2023; Yoder et al., 2010).

The Hymenoptera Anatomy Ontology (HAO, Yoder et al., 2010) was

developed in order to standardize morphological data in an ontological

framework, and while it is in need of updates in light of recent

advances in the field (e.g., Boudinot, 2018; Dal Pos et al., 2023; Girón

et al., 2023), it remains an essential tool that is widely used by hyme-

nopterists. By combining state-of-the-art morphological techniques

with topological guidance from phylogenomic data, the need for a

comprehensive re-examination of the morphology and anatomy

across Hymenoptera is more pressing than ever.

Finally, to adequately use the FBD models, one will also have to

carefully consider the prior knowledge on the extant diversity, as both

the assumptions made about taxon sampling strategy (random versus

diversified) and the proportion of sampled species can seriously

impact the age estimates (e.g., Zhang et al., 2016). The studies within

Hymenoptera that applied the FBD models usually fixed the sampling

proportion of extant taxa relative to the current number of described

species for the target group (e.g., see Gonzalez et al., 2019; Jouault

et al., 2022; Lucena & Almeida, 2022; Zhang et al., 2023). These num-

bers are often far below the estimated true diversity of respective

groups, as demonstrated for Hymenoptera, where the number of

described species is at least 10 times smaller than the number of

estimated species. Moreover, we lack credible estimates of species

richness and taxonomists to power biodiversity discovery and

descriptions for many Hymenoptera groups. However, the recently-

established funds (e.g., ARTS and PurSUiT programmes of the

U.S. National Science Foundation, European joint program

Biodiversa+) and pipelines that aim at accelerating species discovery

and descriptions through integrative taxonomic approaches

(e.g., Hartop et al., 2022), together with more conscious and elaborate

approaches for biodiversity estimation (Engemann et al., 2015; Li &

Wiens, 2023; Stork et al., 2015), might give us more accurate esti-

mates of Hymenoptera diversity in the future.

Open questions in Hymenoptera research

The decreasing cost associated with generating extensive phyloge-

nomic data at large scales has spurred a notable surge in studies

within the order Hymenoptera, confirming or contrasting

morphology-based studies, establishing new hypotheses and identify-

ing areas of uncertainties. To this date, there are several challenging

nodes for which topologies are inconsistent across phylogenomic

methods, often accompanied by relatively low nodal support. This lack

of phylogenetic resolution despite the application of genome-scale

information is not unique to Hymenoptera and is observed across

other insects and beyond (Tihelka et al., 2021). This is not surprising

given analytical limitations of phylogenetic methods and the complex-

ity of the evolutionary process and necessitates meticulous curation

and analysis to address the systematic errors associated with large

datasets, such as missing data, paralogy, heterogeneous amino acid

substitution and incomplete lineage sorting. It is imperative to provide

detailed records of the analysis, including information (preferably fully

reproducible) on contig assembly, orthology detection and model
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specifications, and to deposit raw data and resulting trees as supple-

mental data when publishing these results. Such practices ensure

repeatability and are integral to the scientific process, especially con-

sidering that subsequent macroevolutionary analyses like the study of

historical biogeography or diversification rates can lead to vastly dif-

ferent conclusions based on potentially erroneous tree topologies. To

enhance compatibility between different studies, especially when

dealing with higher level phylogenies, the use of universal markers

such as Hymenoptera-wide UCEs and Metazoa-wide BUSCO is

needed to ensure a unified framework across studies. The gold stan-

dard for future genomic studies should involve the generation of high-

quality genomes, enabling the bioinformatic extraction of various

marker types, and thorough analyses accounting for phylogenetic het-

erogeneity. The employment of computationally expensive amino acid

mixture models or synteny-based methods may aid in resolving recal-

citrant nodes, and megadiverse lineages.

Although we have come a long way in understanding the time scale

of Hymenoptera evolution, there is still uncertainty associated with the

current Permian age estimate for crown-group Hymenoptera (�280 Ma)

(Zhang et al., 2023). In addition, most hymenopteran lineages await age

estimates from total-evidence tip dating studies that incorporate com-

prehensive sampling of extant and fossil taxa with the latest FBD models,

to potentially reconcile the available node dating estimates often span-

ning several geological epochs. Improved divergence dates across Hyme-

noptera, but also across other insect groups, will help us further

comprehend the extent of host-parasitoid co-diversification and the role

of host-shifts in the evolution of the species-rich parasitoid lineages

(Labandeira & Li, 2021). Finally, with the timeline of the angiosperm ori-

gin and diversification still being scrutinized (Salomo et al., 2017; Soltis

et al., 2019; Zuntini et al., 2024), our understanding of the role of flower-

ing plants in the diversification of insects, and in particular phytophagous

and pollinating hymenopteran lineages, is constantly evolving in light of

new evidence (Benton et al., 2022; Blaimer et al., 2023; Nyman et al.,

2019; Peris & Condamine, 2024, van der Kooi & Ollerton, 2020; Vea &

Grimaldi, 2016).
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