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Abstract

Targeted enrichment of ultraconserved elements (UCEs) has emerged as a promising tool for inferring evo-
lutionary history in many taxa, with utility ranging from phylogenetic and biogeographic questions at deep 
time scales to population level studies at shallow time scales. However, the methodology can be daunting 
for beginners. Our goal is to introduce UCE phylogenomics to a wider audience by summarizing recent ad-
vances in arthropod research, and to familiarize readers with background theory and steps involved. We de-
fine terminology used in association with the UCE approach, evaluate current laboratory and bioinformatic 
methods and limitations, and, finally, provide a roadmap of steps in the UCE pipeline to assist phylogeneticists 
in making informed decisions as they employ this powerful tool. By facilitating increased adoption of UCEs in 
phylogenomics studies that deepen our comprehension of the function of these markers across widely diver-
gent taxa, we aim to ultimately improve understanding of the arthropod tree of life.
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The advent of massively parallel sequencing technology and the sub-
sequent emergence of the field of phylogenomics has invigorated 
evolutionary biology in a relatively short time span (reviewed in 
Philippe et al. 2011, Jones and Good 2016). This molecular revolu-
tion has offered unprecedented opportunities to generate large-scale 
datasets, and with the concurrent explosion of analytic and bioinfor-
matics tools, has made it possible to address previously intractable 
challenges due to limited genetic markers. However, the rapidity 
with which new technologies have emerged has made it difficult for 
scientists to stay up to date about useful new tools; understanding 
the steps involved in using new methods presents a challenge for 
researchers.

Genome-scale studies are rapidly supplanting the Sanger 
sequencing-based, multilocus molecular phylogenetic methods that 
dominated from the mid-1990s through the early 2000s; today, 
genomic-scale studies dwarf previous approaches in the sheer scale 
of data they generate (Bravo et al. 2019). While the cost and scale 
of whole-genome sequencing are prohibitive for many researchers, 
recent advances in sequencing technology and laboratory protocols 
have made it possible to generate high-quality genomic datasets 
using a combination of next-generation sequencing, genomic re-
duction, and sample multiplexing (Lemmon and Lemmon 2013, 
McCormack et al. 2013a). These so-called ‘genome reduction’ or ‘re-
duced representation’ approaches can rapidly generate datasets with 

thousands of loci, at relatively low cost, for model and non-model 
taxa alike. Methods such as restriction enzyme-associated DNA 
sequencing (RADseq; Miller et al. 2007, Baird et al. 2008, Peterson 
et al. 2012), transcriptomics (Bi et al. 2012), and target enrichment 
methods such as Anchored Hybrid Enrichment (AHE) (Lemmon 
et  al. 2012) or target capture of Ultraconserved Elements (UCEs) 
(Faircloth 2017) are now widely used for generating genomic-scale 
data for phylogenomic studies. These phylogenomics methods are 
similar in some respects, but each has strengths and weaknesses, 
which may not be easily discerned by researchers new to this 
field. Because of the proliferation of new approaches and tools in 
phylogenetics, selecting a method to use in the era of ‘big data’ can 
be daunting. Potential users need guidance in choosing methods ap-
propriate to their research questions, and in navigating confusing 
terminologies, bioinformatics-heavy data processing, and computa-
tionally intensive analyses.

UCE-based phylogenomics continue to develop rapidly, and the 
lack of comprehensive review has been a significant challenge for po-
tential users to overcome when exploring this option. This paper sum-
marizes recent advances in UCE phylogenomics in arthropod research; 
we start by familiarizing readers with background theory and termin-
ology, and describing the steps involved in generating and analyzing 
UCE data, and then provide quality-control tips to ensure that data 
collection and downstream analyses can be performed with confidence.
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What Are UCEs?

Ultraconserved Elements are highly conserved regions within the 
genome that are shared among evolutionarily distant taxa (Bejerano 
et al. 2004). The DNA adjacent to each ‘core’ UCE region, known as 
flanking DNA, increases in variability with distance from the region 
(Faircloth et al. 2012). UCEs and flanking regions can be selectively 
captured, and used to reconstruct the evolutionary history of taxa at 
various time scales, from deep to shallow phylogenetic divergences 
(Faircloth et al. 2012, McCormack et al. 2012).

The UCE approach belongs to the broad category of ‘target en-
richment’ phylogenomic techniques, which involve selective capture 
of genomic regions from DNA prior to sequencing (Mamanova et al. 
2010). Similar methods include AHE (Anchored Hybrid Enrichment), 
BaitFisher (Mayer et al. 2016), and Hyb-Seq (Weitemier et al. 2014). 
AHE has been the most widely used method for animal studies, 
to date, but all target enrichment methods have been successfully 
used across a variety of taxa. These techniques universally involve 
identifying loci of interest, then designing custom-made molecular 
probes (also known as baits) which are hybridized to loci of interest, 
and ultimately sequencing selected genomic region on a massively 
parallel platform. The main difference between the AHE and UCE 
approaches is the nature of the loci targeted; AHE focuses on fewer 
loci (300–600) that are exclusively exonic, while UCEs target more 
loci (>1,000) using fewer probes—these may include both exonic 
and intronic regions, depending on the organism (Crawford et  al. 
2012, McCormack et al. 2012, Faircloth et al. 2015). While AHE 
can cope with sequence variation at target loci by using a more 
diverse set of probes per locus, the details of the methodology are 
not available for scrutiny as they are, in part, proprietary (Lemmon 
et al. 2012). The UCE approach, in contrast, is fully open source, 
which has contributed to recent interest in using these markers for 
arthropod phylogenomics.

Advantages of UCE Phylogenomics

The UCEs approach has become an increasingly popular target 
enrichment method for generating phylogenomic data, as it offers 
advantages over traditional Sanger sequencing methods in terms 
of quantity of data generated. UCEs have successfully been used 
in studies across a broad array of animal taxa including birds 
(McCormack et al. 2013b, Musher and Cracraft 2018), mammals 
(McCormack et al. 2012, Mclean et al. 2018), fish (Faircloth et al. 
2013, Alda et  al. 2018), amphibians (Newman and Austin 2016, 
Zarza et  al. 2018), reptiles (Crawford et  al. 2012, Streicher and 
Wiens 2017, Myers et al. 2019), sponges (Ryu et al. 2012), cnidar-
ians (Quattrini et  al. 2018), echindoderms (Ryu et  al. 2012), and 
arthropods (Faircloth et al. 2015, Baca et al. 2017b, Branstetter et al. 
2017c, Hedin et al. 2018b, Kieran et al. 2019). These studies range 
widely in evolutionary scale, from phylogenetic and phylogeographic 
questions at deep time scales (Faircloth et al. 2013, Smith et al. 2014, 
Branstetter et al. 2017c) to population level studies at shallow time 
scales (Harvey et al. 2016, Manthey et al. 2016, Zarza et al. 2018, 
Branstetter and Longino 2019, Myers et al. 2019).

Benefits of using UCEs include openly shared resources such as 
probe sets (https://www.ultraconserved.org/), lab protocols (https://
baddna.uga.edu/protocols.html/), and bioinformatics tools (https://
phyluce.readthedocs.io/en/latest/), making it an easy method to 
learn and use in comparison to more proprietary alternatives such as 
AHE. Complete library preparation for around 100 samples can be 
completed in approximately two weeks by one person, or a month 
if counting DNA extraction and possible troubleshooting. UCE 

datasets can be easily standardized, even from multiple studies, by 
using the same probe set. In this way, data from studies using the 
same probe set or with exon/transcriptome data (Bossert et al. 2019, 
Kieran et  al. 2019) can be combined and can incorporate legacy 
methods if the probe set includes Sanger genes (Branstetter et  al. 
2017a). These are distinct advantages over restriction enzyme-based 
methods such as traditional RADseq, which lacks repeatability 
due to the random nature of the restriction enzyme digestion that 
generates random genomic fragments. An additional advantage of 
target enrichment methods is the high success rate with degraded or 
low-quantity samples; older, dried museum specimens may be un-
usable in traditional restriction enzyme-based and transcriptomics 
studies as they require large quantities of high-quality DNA or RNA 
from fresh or carefully preserved tissues (Blaimer et al. 2016a, Lim 
and Braun 2016, Ruane and Austin 2017). It is worth noting that 
newer RAD-based methods such as RADcap (Hoffberg et al. 2016), 
Rapture (Ali et al. 2016), and hyRAD (Suchan et al. 2016) address 
these limitations by using a combination of restriction enzyme di-
gestion and hybridization capture probes to overcome traditional 
RAD-based problems such as allele dropout, and can successfully 
capture degraded DNA from older museum samples.

UCEs and Arthropods

The UCE approach was first demonstrated outside of vertebrates 
in the insect order Hymenoptera (Table 1). To date, two published 
probe sets exist for Hymenoptera: hym-v2 (31,829 probes for 2,590 
UCEs, Branstetter et al. 2017a) includes most of the original hym-
v1 probe sets (2,749 probes for 1,510 UCEs, Faircloth et al. 2015), 
and excludes poorly performing loci. Other arthropods groups for 
which published UCE data exist include Arachnida, Coleoptera, 
and Hemiptera; as well as multiple upcoming studies for Diptera 
(E. Buenaventura, C.  Cohen, K.  Noble, personal communication). 
Psocodea and Lepidoptera probe sets have been developed but not 
yet tested in vitro (Table 1). The utility of UCEs extends beyond 
purely phylogenetic and taxonomic research. For example, UCE-
based community phylogenomics has been used to reveal the im-
portance of bee phylodiversity in agriculture (Grab et  al. 2019); 
UCE-based phylogeny and geometric morphometrics have been 
used in combination to explore the evolution of parasitic wasp 
body shape (Santos et  al. 2019); single-nucleotide polymorphisms 
(SNPs) generated from UCE data have been used to demonstrate 
the success of unsupervised machine learning in species delimitation 
of harvestmen (Derkarabetian et  al. 2019), and UCE phylogenies 
have been integrated with environmental niche modeling to examine 
phylogeographic patterns of ants across the Brazilian Atlantic Forest 
(Ströher et al. 2019).

This study compiles all currently available UCE-based literature 
related to arthropods as of July 2019 (n = 32, Fig. 1, Supp Table S2 
[online only]), but will undoubtedly increase exponentially in the fu-
ture (Table 1). Our aim is to provide a step-by-step guide to make the 
UCE research pipeline more approachable to researchers working 
across different arthropod groups.

UCE Phylogenomics Pipeline

The steps in the UCE pipeline are 1) probe selection and design; 2) wet 
lab work and sequencing; 3) bioinformatics; and 4) phylogenomic 
analyses. Below, we visualize the process in a workflow diagram (Fig. 
2) and describe the choices a researcher must make at each stage. 
A glossary of technical terms is provided as a supplemental docu-
ment (Supp Table S3 [online only]).
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Probe Selection and Design
Probe sets are a collection of oligonucleotides that will bind to 
specific, conserved genome regions of interest, often called baits as 
they can ‘fish’ out the region of interest. These probes are some-
times interchangeably called ‘baits’ as they are used to fish out 
target loci from a ‘pond’ of randomly sheared, adaptor-ligated 
DNA (Gnirke et al. 2009). However, to avoid confusion we rec-
ommend reserving the term ‘baits’ for the intermediate stage in 
probe design; by contrast, ‘probes’ refer to the final products that 
is synthesized for commercial use (Gustafson et al. 2019). A probe 
set functions through a collection of biotinylated oligonucleotides 

that are designed to bind with specific genome regions of interest. 
Probes are combined with denatured and cooled DNA, allowing 
for ‘in solution’ hybridization to targets. Streptavidin-coated mag-
netic beads, which have high affinity for biotin, are added into the 
solution. The beads then bind to the probe-DNA hybrids through 
the biotin on the probe set. Any unwanted DNA fragments are 
then washed away, leaving only the desired regions attached to the 
beads (Gnirke et al. 2009).

Probes are designed based on UCE loci identified from pub-
lished genomes for each taxonomic group. Currently probe sets 
for Arachnida, Coleoptera, Diptera, Hemiptera, and Hymenoptera 

Table 1.  Published studies using arthropod UCE datasets as of July 2019

Taxonomic group Probe sets References

Hymenoptera Hymenoptera 1.5Kv1 
Hymenoptera 2.5Kv2 Full 
Hymenoptera 2.5Kv2 Ant-Specific 
Hymenoptera 2.5Kv2 Bee-Ant-Specific

(Blaimer et al. 2015, 2016a,b, 2018a,b; Faircloth et al. 2015; Branstetter et al. 
2017a,b,c; Ješovnik et al. 2017; Pierce et al. 2017; Prebus 2017; Ward and 
Branstetter 2017; Cooke 2018; Borowiec 2019; Bossert et al. 2019; Branstetter 
and Longino 2019; Cruaud et al. 2019; Grab et al. 2019; Santos et al. 2019; 
Ströher et al. 2019)

Arachnida Arachnida 1.1Kv1 
Mite‐v2

(Faircloth 2017; Starrett et al. 2017; Derkarabetian et al. 2018, 2019; Hedin et al. 
2018a,b, 2019; Wood et al. 2018; Van Dam et al. 2019)

Coleoptera Coleoptera 1.1Kv1 
Adephaga_2.9Kv1

(Baca et al. 2017b, Faircloth 2017, Van Dam et al. 2017, Gustafson et al. 2019)

Hemiptera Hemiptera 2.7Kv1 (Faircloth 2017, Forthman et al. 2019, Kieran et al. 2019)
Diptera Diptera 2.7Kv1 (Faircloth 2017)
Lepidoptera (in silico only) (Faircloth 2017)
Psocodea Phthiraptera-2.8Kv1 (in silico only) (Zhang et al. 2019)

Hemiptera Hymenoptera

Arachnida Coleoptera
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Fig. 1.  Breakdown of the number of arthropod UCEs-based publications per year (as of July 2019) by taxonomic group and taxonomic hierarchy.
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are available for purchase through Arbor Biosciences (https://
arborbiosci.com/products/uces/). Other taxonomic groups either 
have no probe sets available, or have not been tested in vitro. 
Designing new probe sets may prove challenging in the absence 
of published genomes for a group of interest. Nevertheless, low-
coverage genome sequencing (5×) may be an increasingly afford-
able appropriate first step (Zhang et  al. 2019). The sequenced 
genomes selected as the basis for probe design should ideally re-
flect diversity within the group of interest. Ideally multiple gen-
omes should be used for probe design, but minimally probe sets 
designed based on only two genomes (hym-v1) were shown to be 
successful in capturing UCEs across the diverse order Hymenoptera 
(Faircloth et al. 2015).

Whereas probe selection is straightforward (they are either 
available for the group of interest or they are not), probe design 
for new taxonomic groups is a time-consuming process for any 
target enrichment method, as the probe sets can differ in number 
and composition depending on the target taxa and evolutionary 
scale. Currently published probe sets for arthropods target 1,100–
2,700 UCEs loci, and have been made publicly available under 
public domain license (CC-0), thus allowing for restriction-free 
commercial synthesis, testing, use and improvements by other re-
search groups (http://ultraconserved.org/#protocols) (Branstetter 
et al. 2017a, Faircloth 2017, Gustafson et al. 2019). A generalized 
workflow for identifying conserved sequences shared among diver-
gent genomes and enrichment probes design is available (Faircloth 
2017), and a new pipeline has been described using low-coverage 
genome sequencing that can also be used to design UCE probes 
(Zhang et al. 2019). In brief, the probe design sequence is 1) select 
base genome (s); 2) generate short reads as exemplars of the focal 
group’s diversity and align to base genome(s); 3) merge approxi-
mate reads and find overlapping regions shared among exemplar 
taxa and base genome (conserved regions); 4)  design temporary 

bait set from base genome against conserved regions and align to 
exemplar genome assemblies to remove duplicates; and 5) design 
exemplar-specific probes for each locus where temporary baits 
match exemplar genome assemblies.

How to best optimize the probe design process is an area of 
active research. Both base genome choice and initial bait design 
stringency parameters can greatly affect the number of resultant 
probes and, subsequently, the number of loci detected and re-
covered in adephagan beetles (Gustafson et al. 2019). The optimal 
base genome can be selected by conducting a base genome experi-
ment by iteratively selecting each taxon as the base genome and 
finding candidate loci shared among exemplar taxa, or selected 
from taxon with the smallest average genetic distance to the other 
exemplar taxa through independently generated Sanger markers. 
Probe sets can also be modified to incorporate additional loci. The 
Hymenoptera probe set hym-v1 was improved by the publication 
of hym-v2, which included most of the original hym-v1 loci as 
well as new loci and probes targeting 16 commonly sequenced nu-
clear genes to allow for ‘back compatibility’ with Sanger-era data 
(Branstetter et  al. 2017a). The resulting capability of combining 
new genomic data with older sequences obtained from ‘legacy’ 
markers is vital to phylogenetic studies, as DNA quality tissue for 
many rare but vital taxa to phylogenetic studies may be difficult 
or impossible to obtain repeatedly. In silico tests of existing probe 
sets demonstrate moderate success with sister outgroups, such 
as using the Hemiptera probe set to capture UCEs from thrips 
(Insecta, Order: Thysanoptera) (Faircloth 2017). Importantly, ex-
pense, time, and computational resources needed should be taken 
into consideration when designing new probe sets. The cost of 
development should be weighed against the potential future use 
of the probe set beyond the initial study; UCE probes for larger 
clades, for example, may be more likely to be adopted for multiple 
uses than those designed for species-poor groups.

Fig. 2.  Generalized workflow of the UCE pipeline.
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Wet Lab Work and Sequencing

Specimen Selection and DNA Extraction
Selecting appropriate specimens for DNA extraction is vital to any 
phylogenetic endeavor. The first major requirement for molecular 
phylogenetics is to capture high-quality DNA. DNA capture success 
rates can be negatively affected by specimen age and preservation 
method (Short et al. 2018); Arthropod studies are often limited by 
DNA degradation, as most natural history collections have historic-
ally preserved specimens dry (pinned) or stored in 70% ethanol at 
room temperature which can lead rapid deterioration of DNA (Short 
et al. 2018). Other complications include the number of freeze/thaw 
cycles (as few as possible), and the number/frequency of alcohol 
changes (regular enough to maintain 95% EtOH concentration and 
keep specimens submerged).

The degraded DNA of older specimens preserved by less-than-
ideal methods can, fortunately, be captured by massive-parallel 
methods successfully incorporate shorter, more degraded DNA frag-
ments than can be used for sanger sequencing. One illuminating 
study generated nearly 1,000 UCEs loci from pinned bee specimens 
up to 121 yr old (Blaimer et  al. 2016a). This study demonstrated 
that pinned specimens less than 20 yr old had significantly higher 
pre- and postlibrary concentrations, UCE contig lengths, and locus 
counts compared to older specimens. The small size (<5 mm), and 
often corresponding low DNA yield, of many arthropod specimens 
is another challenge to successful capture of genomic data, and a 
problem that may be exacerbated using nondestructive sampling to 
retain voucher specimens. Total yield of genetic material can be in-
creased with the use of DNA amplification kits, albeit at a higher 
cost (Cruaud et al. 2018). UCE data has been successfully generated 
from minute, nondestructively sampled chalcidoid wasps (average 
DNA input = 25 ng, Cruaud et al. 2019). This study used a modified 
protocol to maximize DNA yield from a commercially available ex-
traction kit (Qiagen DNeasy Blood and Tissue Kit, Valencia, CA), by 
using LoBind tubes (Eppendorf) and heating the elution buffer for 
longer periods, while decreasing the number of purification steps. 
While no correlation between input DNA quantity and number of 
UCE loci captured in this dataset, a large amount of missing data 
ultimately resulted in a data matrix that was only 25% complete. 
Ultimately, in order to ensure high-quality DNA generation, using 
fresh, or specimens preserved in 95% EtOH and stored in −80°C 
or −20°C, is recommended. Pinned specimens collected within the 
past 20 yr are also suitable. Destructive sampling will likely generate 
higher DNA yield, but for rare specimens nondestructive soaking 
within lysis buffer will suffice.

Careful selection of tissue types can significantly lower the potential 
of contamination by nontarget organisms. Precautions can be taken by 
decontaminating specimens using UV light, as well as separating areas 
used for DNA extraction from amplification areas (Yeates et al. 2016). 
Additional recommendations include removing appendages used by 
predators to capture prey (Bossert and Danforth 2018), and targeting 
life stages, such as adults, that are less likely to host endoparasitoids. 
Contamination can also be reduced by using either strict bioinfor-
matic processing parameters, or methods such as the phyluce_as-
sembly_match_contigs_to_barcodes script in PHYLUCE, extracts the 
COI barcode region which can be used for validating the presence of a 
single or multiple species (Bossert and Danforth 2018).

Library Preparation
Once DNA has been extracted from target organisms, wet lab 
protocol for preparing the DNA libraries for sequencing varies little 
across taxa. Depending on the quality of DNA or level of DNA 

degradation, the extracted and quantified genomic DNA may need 
to be sheared using sonication or enzymatic digestion to reach the 
target size of 400–600 bp. The degree of DNA degradation will de-
termine the duration of sonication needed; this can be assessed using 
gel electrophoresis, or automated electrophoresis systems such as 
TapeStation or Bioanalyzer.

At this stage, UCE sample preparation consists of seven main 
steps: 1) DNA quantification; 2) adaptor ligation; 3) PCR amplifica-
tion and initial pooling of specimens; 4) hybrid enrichment; 5) amp-
lification of enriched libraries; 6) Quantification and final pooling; 
and 7) size selection and final quantification (detailed in Branstetter 
et al. 2017a).

Bioinformatics
Once sequencing is complete, it is time to proceed to data analysis. 
Like other genomic datasets, one of the advantages of UCEs is 
the volume of data returned; managing datasets at this scale also 
presents a challenge to researchers new to genomics. Processing 
UCE data involves three principal steps: 1)  demultiplexing, fil-
tering, and trimming the raw Illumina reads; 2) contig assembly; 
and 3) UCE processing for phylogenomic analysis. Currently, the 
most widely-used bioinformatics pipeline for UCE data processing 
is PHYLUCE (Faircloth 2015), which includes a suite of Python 
wrapper scripts for these steps by calling other programs (detailed 
below) and batch processing many samples at once. Additional 
bioinformatic programs not currently included within PHYLUCE 
can also be used to process data, as data can easily be imported 
back into the pipeline. Alternatively, the SECAPR (Andermann 
et al. 2018) pipeline also functions similarly to PHYLUCE and can 
be used for batch processing of UCE data, while the MitoFinder 
(Allio et al. 2019) pipeline can be used to extract both UCE and 
mitogenomic data.

	 1)	 Demultiplexing, filtering, and trimming of raw Illumina 
reads. Analyzing Illumina data always begins with batch trim-
ming of adapters and low-quality bases of demultiplexed 
data. In the PHYLUCE pipeline this is achieved using 
Illumiprocessor (Faircloth 2013), which is built around the 
Trimmomatic program (Bolger et  al. 2014). Alternatively, 
external trimming programs such as Trim Galore! (https://
github.com/FelixKrueger/TrimGalore) can be used instead of 
Illumiprocessor.

	 2)	 Contig Assembly. Currently PHYLUCE supports multiple 
programs such as velvet (Zerbino and Birney 2008), Trinity 
(Grabherr et  al. 2011), ABySS (Simpson et  al. 2009), and 
SPAdes (Bankevich et  al. 2012) for genome assembly. While 
Trinity has been the most widely used of the assembly methods 
in published papers, updates to PHYLUCE are in the pro-
cess of eliminating compatibility with Trinity due to technical 
issues. Both ABySS and velvet require an input for k-mer value, 
which is as part of the De Bruijn graph assembly algorithm. 
Smaller k-mers result in the assembly of shorter contigs with 
more connections, while large k-mers can result in longer but 
fewer contigs. However, it is difficult to determine the k-mer 
size for UCE data as the depth of coverage for each locus is 
variable due to capture efficiency. Therefore, testing multiple 
k-mer values is recommended, starting at the default of 35 and 
moving up to 55–65 to find the best trade-off in terms of contig 
size vs. k-mer number. Automatic estimation of k-mers is pos-
sible using SPAdes or the VelvetOptimiser wrapper script along 
with velvet. Mitogenomic assemblers, such as MetaSPAdes 
(Nurk et al. 2017), are a promising alternative to currently used 
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genomic and transcriptomic de novo assemblers (Allio et  al. 
2019). These new tools are designed to account for variance in 
sequencing coverage, and are thus capable of generating larger 
and more complete supermatrices in a fraction of the time re-
quired by Trinity.

	 3)	 UCE processing for phylogenomics. Once assembled, contigs 
must be processed to determine which ones represent enriched 
UCE loci. Orthologs are identified by aligning the assembled 
contigs to a FASTA file of target enrichment baits, and paralogs 
are subsequently removed (Faircloth 2015). The output is then 
screened to identify 1)  assembled contigs match by probes 
targeting different loci, and 2) different contigs match by probes 
targeting the same loci. The latter must be removed from down-
stream analysis because they will be identified as potentially 
paralogous genes by PHYLUCE (Faircloth 2015), which can 
be problematic if the probes are not well-designed (see Current 
and Future Challenges below). The resulting FASTA files are 
then aligned using MUSCLE (Edgar 2004) or MAFFT (Katoh 
et al. 2002) within PHYLUCE, followed by trimming for data 
matrix completeness using GBlocks (Castresana 2000) or 
TrimAl (Capella-Gutiérrez et al. 2009). Finally, the completed 
data matrices can be exported in a variety of commonly used 
formats (e.g., phylip, nexus, etc.) for downstream phylogenomic 
analyses.

Allelic Phasing
Allelic phasing is an additional, optional data processing step that 
extracts SNPs from UCE loci by separating (phasing) the hetero-
zygous sites into two allele sequences; this approach can be used 
to increase resolution for shallow-level phylogenetic or species 
delimitation studies (Zarza et  al. 2018, Andermann et  al. 2019, 
Derkarabetian et al. 2019). Allelic phasing has been shown to pro-
vide more accurate estimation of tree topology and divergence 
times than using contig sequences, especially at shallow phylogen-
etic levels under multispecies coalescent (MSC) models (Andermann 
et al. 2019), and can be performed in both PHYLUCE and SECAPR. 
This is in part due to common assembler programs not originally de-
signed for heterozygous sequences or genomes, and as a result contig 
sequences generated by these programs will mask information by 
eliminating one of the two variants at a heterozygous site (Bodily 
et  al. 2015). Another benefit of phasing the sequence doubles the 
sample size, as each diploid individual will have two strands of DNA 
sequences (Andermann et al. 2019). While this is not always neces-
sary for deep level phylogenomic studies, we recommend performing 
allelic phasing for UCE datasets intended for shallow-scale evolu-
tionary studies, such as species delimitation or population genomics. 
However, sufficient sequence coverage is needed to ensure the quality 
of phased results, as contigs with lower coverage risk being phased 
inaccurately.

Phylogenomic Analyses

At this stage, data are nearly ready for use in phylogenetic reconstruc-
tion. Before beginning, however, it is advisable to perform inspection 
of sequence alignments for each gene, whether using programs such 
as GUIDANCE2 (Sela et  al. 2015) or custom scripts, rather than 
labor-intensive inspection by eye. Preparation of raw data for tree 
building has become highly automated in response to the large vol-
umes of data generated by high-throughput methods. Standardized 
sequence inspection helps reduce errors and inconsistencies, but can 
also be responsible for introducing errors in UCE datasets.

Data Filtering
Data filtering is a vital step in quality control of phylogenomic 
studies, as sequencing thousands of genes across many samples 
can lead to missing data in certain taxa. We advise using different 
filtering criteria to generate multiple datasets and thereby find a 
balance between maintaining sequence quantity and quality. For 
example, GC bias has been demonstrated to be negatively correl-
ated with topological support in bees (Bossert et al. 2017), and in-
congruences among analyses have been found to be exacerbated in 
studies of ants that used only ‘high signal’ loci with highest average 
bootstrap (Borowiec 2019). While there is no current consensus on 
the best approach to filtering UCE data, multiple strategies exist. 
The program BaCoCa (Kuck and Struck 2014) can be used to filter 
out genes based on statistical properties such as saturation of nu-
cleotides, compositional bias and heterogeneity, and proportion of 
shared missing data. The program Phylo-MCOA (de Vienne et  al. 
2012) can be used to detect outlier genes or species that cause topo-
logical incongruences; these can be subsequently filtered out for 
phylogenetic reconstruction. Another approach to data filtering is to 
retain only protein-coding genes rather than every UCE locus, some 
of which may include noncoding regions (see Current and Future 
Challenges below for more details). Also promising is analysis of 
protein-coding genes, which evolve under purifying selection and 
can be analyzed separately as amino acids; a custom script is now 
available for extracting putative protein-coding genes from UCE 
data (Borowiec 2019).

Data Partitioning
Approaches to partitioning UCE data can be divided into three strat-
egies: 1) assign all UCE loci to a single partition; this assumes that 
every site in the alignment has evolved under a common evolutionary 
process; 2) assign each UCE locus to a separate partition; this allows 
for variation in rates and patterns of evolution between UCEs but 
assumes that all sites within each UCE locus have evolved under 
the same Markov process; or 3) k-means clustering of sites based 
on evolutionary rates (Frandsen et al. 2015), which subdivides data 
into partitions based on evolutionary rates, thus avoiding a priori 
partitioning by the user. All three are used, however, recent studies 
have shown the k-means algorithm could be unreliable for UCE 
data, as it generates a partition comprised of all the invariant sites 
in the dataset, possibly misleading phylogenetic inference methods 
(Baca et al. 2017a). A promising new method for partitioning UCE 
data is the Sliding-Window Site Characteristics (SWSC, Tagliacollo 
and Lanfear 2018), which divides each UCE locus into three data 
blocks (right flank, core, and left flank) as the UCE core regions are 
conserved, while the two flanking regions become increasingly more 
variable (Faircloth et al. 2012). Different methods can be used by 
SWSC to evaluate sites, but the site entropies (EN), in particular, 
have been shown to most accurately account for within-UCE het-
erogeneity (Tagliacollo and Lanfear 2018). Using the SWSC-EN 
partitioning schemes account for within-UCE heterogeneity and 
leads to an increase in model fit (Tagliacollo and Lanfear 2018, 
Branstetter and Longino 2019).

Tree Building
Once datasets have been generated, downstream analyses on UCE 
data are similar to phylogenetic analyses performed on most other 
data types (e.g., Sanger sequencing, SNPs, etc.). A  variety of tree-
building methods (Fig. 3) can be used for reconstructing phylogeny 
from UCE datasets, including Maximum Likelihood (ML), Bayesian 
Inference (BI), or Multispecies Coalescent/Species Tree (MSC). While 
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the intricacies of phylogenetic analyses are beyond the scope of 
this paper, excellent and detailed overviews—both theoretical and 
practical—are available (Yang and Rannala 2012, Liu et al. 2015, 
Bromham et al. 2018, Bravo et al. 2019).

Maximum Likelihood
Maximum likelihood (ML) is a statistical methodology for estimating 
unknown parameters in a model. ML is widely used in phylogenetic 
studies due to its use of complex substitution models and its robust-
ness to many violations to the assumptions of these models (Yang 
and Rannala 2012). The most widely used programs for phylogenetic 
reconstruction in the ML framework includes RAxML (Stamatakis 
2006, Kozlov et al. 2018) and IQ-TREE (Nguyen et al. 2014). One 
advantage of these programs is their speed, with the former being the 
dominant method within UCE literature despite having very limited 
evolutionary model choices. IQ-TREE has gained momentum in re-
cent years for its ability to produce accurate trees without sacrificing 
speed (Zhou et al. 2018). It includes functions such as ModelFinder 
for finding appropriate evolutionary models (Kalyaanamoorthy 
et al. 2017); approximation-based methods such as ultrafast boot-
strap (UFBoot) and Shimodaira-Hasegawa like approximate likeli-
hood ratio test (SH-aLRT), which greatly decreases computational 
time compared to traditional nonparametric bootstrap methods 
(Guindon et al. 2010, Hoang et al. 2017); and gene/site concordance 
factors as alternative support measures to illustrate disagreement 
among loci and sites (Minh et al. 2018).

Bayesian Inference and Divergence Dating
Like ML, Bayesian inference (BI) is also a general methodology of 
statistical inference that has been widely adopted for phylogenetic 
analyses. Bayesian inference differs from ML in that parameters 
in the models are considered to be random variables within statis-
tical distributions rather than unknown fixed constants (Yang and 
Rannala 2012). Today BI using the Markov chain Monte Carlo 
(MCMC) sampling is a widely adopted method used for phylogen-
etic analysis, as the incorporation of prior knowledge into the ana-
lysis offers an appealing alternative to ML even at the cost of slower 
computational speed (Nascimento et  al. 2017). The commonly 
used Bayesian programs for phylogenomics data include BEAST 
(Drummond and Rambaut 2007), BEAST 2 (Bouckaert et al. 2014), 
and ExaBayes (Aberer et al. 2014). Bayesian analyses are extremely 
sensitive to prior probabilities set by users, and often default priors 
may not be appropriate for the data being analyzed as they can affect 
resulting topologies (Nascimento et al. 2017). Because setting priors 
can be daunting for beginners, we advise users to resist the all-too-
common tendency to employ default settings and instead urge users 
to follow steps outlined in Bromham et al. (2018) to make informed 
choices when setting up Bayesian analyses. Running an ‘empty’ ana-
lysis without data to allow MCMC algorithm sampling from the 
prior is a good way of checking whether the data were informative 
enough to return posterior distributions different from the marginal 
priors, and to assess for good convergence and mixing of the MCMC 
chains (Nascimento et al. 2017, Blaimer et al. 2018b).
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Fig. 3.  Breakdown of the phylogenetic programs used by arthropod UCE-based publications (as of July 2019).
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Divergence time estimation analyses can also be implemented 
for UCE phylogenies to generate dated chronograms, using care-
fully selected fossils as calibration points. The commonly used 
node-dating approach assigns the oldest fossil that can be confi-
dently identified to the youngest internal node, imposing the age 
of the fossil as a minimum age constraint (Arcila et al. 2015). An 
alternative method called total-evidence, or tip-dating methods 
can include all available paleontological information, ameliorating 
fossil-placement uncertainty while simultaneously incorporating 
fossil ages into the analysis (Ronquist et al. 2012a). Both of these 
methods can be implemented for divergence date estimation using 
Bayesian inference programs such as MrBayes (Ronquist et  al. 
2012b), BEAST/BEAST2, and the MCMCTree package in PAML 
(Yang 2007). While MCMCTree is faster computationally, the setup 
for prior distributions on fossil calibrations is less intuitive. BEAST/
BEAST2, by comparison, is easier to understand and offers more 
analytical options such as the incorporation of fossils directly into 
the phylogeny with the newly developed node-dating method using 
the fossilized birth-death model (Heath et al. 2014). The fossilized 
birth-death model offers an advantage over other methods by com-
bining morphological and molecular data as well as stratigraphic 
range data from the fossil record, and can be implemented directly in 
RevBayes (Höhna et al. 2016), or in BEAST2 with the sampled an-
cestor package (Gavryushkina et  al. 2014). In general, large data 
volumes associated with UCEs makes most Bayesian analyses too 
computationally intensive to be practical. To overcome this limita-
tion, many studies reduce data size by removing taxa or loci in order 
to reduce the analysis time (Blaimer et al. 2018b, Borowiec 2019). 
It is also worth noting that tip-dating models have been shown to 
recover older ages than traditional node-dating models, and might 
produce inaccurate date estimations (Arcila et al. 2015). Regardless 
of the approach, the resulting dated chronogram can be then used as 
input for additional analyses such as ancestral state reconstruction, 
historical biogeographic analysis, or diversification rates estimation.

Multispecies Coalescent/Species Tree
One key advance in molecular phylogenetics has been the acknow-
ledgement that high levels of incomplete lineage sorting (ILS) or other 
stochastic errors can yield misleading results for traditional concat-
enation methods (Liu et al. 2015, Bravo et al. 2019). Incorporation 
of discordance between gene trees and species trees as a result of high 
ILS, under the MSC model (Heled and Drummond 2009) can alleviate 
this problem. Commonly used MSC tree summary-based methods 
such as ASTRAL (Mirarab et al. 2014, Mirarab and Warnow 2015, 
Zhang et al. 2018) and MP-EST (Liu et al. 2010) are performed in 
two steps, wherein gene trees are estimated first and separately, then 
used as input to generate a species tree based on various summaries 
of coalescent process (Bravo et al. 2019). Because the accuracy of the 
individual input gene trees directly affects the resulting species tree, 
these summary-based methods are especially susceptible to gene tree 
estimation errors (Molloy and Warnow 2018). Therefore, checking 
individual gene trees for incongruences is advised to ensure species 
tree accuracy in summary-based methods. Methods such as concord-
ance factors (Ané et al. 2006, Minh et al. 2018) should be used to 
provide insight into the influence of ILS versus other factors such 
as introgression on the resulting topology. Alternatively, site-based 
coalescent methods such as SVDquartets (Chifman and Kubatko 
2014) and SVDquest (Vachaspati and Warnow 2018) bypass gene 
tree estimation, and is comparable or even more accurate than sum-
mary methods in cases of high ILS (Chou et al. 2015, Molloy and 
Warnow 2018). Finally, the newly developed StarBEAST2 (Ogilvie 

et al. 2017) package for BEAST2 is a promising implementation of 
the full MSC model which can jointly infer gene trees and species 
trees, but the current version is too computationally intensive to use 
on large UCE datasets.

Resources and Costs
Most steps of the wet lab protocol can be performed in standard mo-
lecular labs that have access to equipment such as a centrifuge and 
thermocycler. More specialized equipment such as a sonicator for 
shearing DNA, TapeStation/Bioanalyzer for quantifying DNA, and 
BluePippin/PippinHT for size selection can all be substituted with 
cheaper, albeit less accurate alternatives such as restriction enzymes, 
gel electrophoresis, and magnetic beads.

Illumina platforms (HiSeq, NextSeq, NovaSeq) are generally 
used for UCE studies due to their high throughput and low cost 
per base pair. The current estimated cost per specimen is approxi-
mately $30–40 USD, accounting for costs of all reagents in library 
preparation and paired-end Illumina run (Supp Table S1 [online 
only] for sample cost breakdown). Some commercial laboratories 
(e.g., RAPiD Genomics, Gainesville, FL) also offer UCE enrich-
ment services, handling all library preparation, enrichment, and 
sequencing; customers simply submit DNA extracts and then receive 
sequence data. Costs associated with such ‘concierge service’ are 
considerably higher (approximately ~$120 per specimen), but this 
may be an attractive option for researchers lacking the infrastructure 
or personnel to undertake wet lab protocols.

Having access to high performance computing (HPC) greatly ex-
pedites bioinformatic and phylogenomic analyses, especially when 
processing large batches of samples. While PHYLUCE and many as-
sociated data-processing programs can be run in a local Unix/Linux 
environment, the parallelization using HPC will reduce execution 
time in computationally intensive steps such as demultiplexing and 
assembly. Similarly, many phylogenomics programs discussed above 
can also be expedited through this process.

Data Availability Recommendations
One hallmark feature of UCE data is its open source nature; probe 
sets, protocols, and previously published data are made publicly 
available, ensuring repeatability—the foundation of open scientific 
research. To this end, untrimmed raw Illumina reads should be up-
loaded to public database such as Sequence Read Archive (SRA) 
once studies are published, giving interested readers the full ability to 
download and process the data using different trimming settings. All 
analytical methods such as software and code used to process data 
should also be made publicly available on repositories such as Dryad 
or GitHub. UCE contigs can be uploaded to GenBank as targeted 
locus studies, making the data available for BLAST. The voucher 
specimens from which DNA was extracted should be deposited in 
recognized scientific collections and museums; associated informa-
tion such as collection locality, identification, etc., should be included 
as metadata with all molecular sequences (Bravo et al. 2019).

Current and Future Challenges

UCEs and similar methods offer the ability to generate massive 
amounts of data from many loci, and yet, despite the increase in 
data volume, the same concerns that have long plagued phylogenetic 
analyses remain as relevant as ever: taxon sampling, choice of align-
ment methods, and composition bias (Bossert et al. 2017, Mclean 
et al. 2018). Recent research also suggests phylogenomic results can 
be strongly affected by a tiny proportion of highly biased loci or 
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sites (Shen et al. 2017), and reduction of phylogenetic noise resulting 
from compositional heterogeneity and saturation can increase con-
gruence among different analytic methods (Borowiec 2019). With 
that in mind, we strongly encourage performing sensitivity analyses 
to test the robustness of results when interpreting phylogenomic 
data (Borowiec 2019, Camacho et al. 2019), as these large datasets 
are less prone to uncertainty, and instead may give strongly sup-
ported wrong results if model violations are not carefully evaluated 
(Borowiec et al. 2019).

The fact that the function of UCEs remains largely unknown is 
the basis of active research and a current challenge for identifying 
and modeling UCEs in a phylogenomic context (Bejerano et  al. 
2004). Vertebrate UCEs are characterized as predominantly 
noncoding sequences, nonrandomly distributed across chromosomes 
and acting as regulators and/or enhancers of gene expression (Baira 
et al. 2008, Polychronopoulos et al. 2017). By contrast, studies of in-
vertebrate UCEs reveal that most flanking regions captured include 
exons (Branstetter et al. 2017a), with the most widely shared loci 
being either exclusively conserved exons or partially exonic regions 
in Hymenoptera and Arachnida (Bossert and Danforth 2018, Hedin 
et  al. 2019). This is an exciting discovery, as the exonic flanking 
regions captured by the UCE process and transcriptome sequence 
data within these groups can be meaningfully combined, without the 
need to design specific probe sets to target them, as demonstrated 
in Apidae (Bossert et  al. 2019). However, since the genomic land-
scapes of different animal taxa can differ substantially, the wider 
application of combining transcriptomic data with UCEs in other 
taxonomic groups still needs to be tested. Currently, it appears that 
the function of UCEs is highly variable, with flanking regions con-
taining exons and introns; whether this variability will affect down-
stream analyses remains to be seen.

Continued refinement of existing probe sets is needed to in-
crease capture success while minimizing duplicates and paralogous 
loci. It has been shown in the arachnid probe set, different UCE 
probes sometimes target regions of the same protein, or include 
nonorthologous sequences (Hedin et al. 2019). This is unsurprising 
given the wide phylogenetic depth of the probe set, which was de-
signed to target all arachnids, but given that PHYLUCE cannot de-
tect these nonorthologous sequences as the program only removes 
different contigs hit by probes targeting the same loci (Faircloth 
2015), additional manual filtering is needed to ensure the exclusion 
of misleading paralogous sequences into the final data matrix (Hedin 
et al. 2019).

Conclusion

Ultraconserved elements-based phylogenomic studies have been 
rapidly adopted by researchers working on arthropod taxa since 
their introduction by Faircloth et al. (2012). This review described 
the versatility of UCE data at both deep and shallow evolutionary 
scale, and provided a step-by-step guide to generating and analyzing 
UCEs; we then summarized current practices, challenges, and unre-
solved questions that surround this active field. Our hope is to make 
UCE-based phylogenomic studies more accessible to users with di-
verse taxonomic interests, and thereby deepen our collective under-
standing of the roles and functions of UCEs across widely divergent 
taxa. As our understanding of UCEs develops through studies of dif-
ferent organisms, identifying individual genes and incorporation of 
functional genomics will yield interesting comparative studies across 
deeply divergent taxonomic groups and provide new insights in the 
continued pursuit of building the tree of life.

Supplementary Data

Supplementary data are available at Insect Systematics and Diversity 
online.

Supplemental Table 1. Sample cost breakdown of DNA extrac-
tion, library preparation, UCE enrichment, and Illumina sequencing 
estimated at around $40 USD per specimen for 96 samples. (as of 
July 2019).

Supplemental Table 2. Breakdown of methods used by used in 32 
UCE-based arthropod studies (as of July 2019).

Supplemental Table 3. Glossary of commonly encountered ter-
minology in UCE generation and analyses.
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